Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Numéro 5, September–October 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Numéro d'article 32
Nombre de pages 18
DOI https://doi.org/10.2516/ogst/2017028
Publié en ligne 7 novembre 2017
  • Ozdor N., Dulger M., Sher E. (1994) Cyclic variability in spark ignition engines: a literature survey, SAE Technical Paper 940987. [Google Scholar]
  • Johansson B. (1996) Cycle to cycle variations in S.I. engines − the effects of fluid flow and gas composition in the vicinity of the spark plug on early combustion, SAE Technical Paper 962084. [Google Scholar]
  • Pajot O. (2000) Etude expérimentale de l'influence de l'aérodynamique sur le comportement et la structure du front de flamme dans les conditions d'un moteur à allumage commandé, Thèse, University of Orléans, Orléans, France. [Google Scholar]
  • Ayala F.A., Heywood J.B. (2007) Lean SI engines: the role of combustion variability in defining lean limits, SAE Technical Paper 2007-24-0030. [Google Scholar]
  • Lacour C., Pera C. (2011) An experimental database dedicated to the study and modelling of cyclic variability in spark-ignition engines with LES, SAE Technical Paper 2011-01-1282. [Google Scholar]
  • Baum E., Peterson B., Böhm B., Dreizler A. (2014) On the validation of LES applied to internal combustion engine flows, Part 1: comprehensive experimental database, Flow Turb. Combust. 92, 1–2, 269–297. [Google Scholar]
  • Schiffmann P. (2016) Root causes of cycle-to-cycle combustion variations in spark ignited engines, PhD thesis, University of Michigan, Ann Arbor, MI, USA. [Google Scholar]
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371–4390. [CrossRef] [Google Scholar]
  • Bates S.C. (1989) Flame imaging studies of cycle-by-cycle combustion variation in a SI four-stroke engine, SAE Technical Paper 892086. [Google Scholar]
  • Pera C., Knop V., Reveillon J. (2015) Influence of flow and ignition fluctuations on cycle-to-cycle variations in early flame kernel growth, Proc. Combust. Inst. 35, 2897–2905. [CrossRef] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 1562–1575. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2009) Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines, Proc. Combust. Inst. 32, 2759–2766. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Janicka J. (2013) Analysis of misfire processes in realistic direct injection spark ignition engine using multi-cycle large eddy simulation, Proc. Combust. Inst. 34, 2969–2976. [CrossRef] [Google Scholar]
  • Heywood J.B. (1988) Internal combustion engine fundamentals, McGraw Hill, New York. [Google Scholar]
  • Matekunas F.A. (1983) Modes and measures of cyclic combustion variability, SAE Technical Paper 830337. [Google Scholar]
  • Beretta G.P., Rashidi M., Keck J.C. (1983) Turbulent flame propagation and combustion in spark ignition engines, Combust. Flame 51, 217–245. [CrossRef] [Google Scholar]
  • Abraham J., Bracco F.V., Reitz R.D. (1985) Comparisons of computed and measured premixed charge engine combustion, Combust. Flame 60, 309–322. [CrossRef] [Google Scholar]
  • Arpaci V.S., Ko Y., Lim M.T., Lee H.S. (2003) Spark kernel development in constant volume combustion, Combust. Flame 135, 315–322. [CrossRef] [Google Scholar]
  • Liu K., Haworth D.C., Yang X.S., Gopalakrishnan V. (2013) Large-eddy simulation of motored flow in a two-valve piston engine: POD analysis and cycle-to-cycle variations, Flow Turb. Combust. 91, 373–403. [Google Scholar]
  • Schiffmann P., Gupta S., Reuss D., Sick V., Yang X., Kuo T.-W. (2016) TCC-III engine benchmark for large-eddy simulation of IC engine flows, Oil Gas Sci. Technol. – Rev. IFP 71, 1, 1–27. [Google Scholar]
  • Sick V., Reuss, D.L., Yang X., Kuo T.-W. (2014) https://deepblue.lib.umich.edu/handle/2027.42/108382. [Google Scholar]
  • Reuss D.L. (2000) Cyclic variability of large-scale turbulent structures in directed and undirected IC engine flows, SAE Technical Paper 2000-01-0246. [Google Scholar]
  • Abraham P.S., Yang X., Gupta S., Kuo T.-W., Reuss D.L., Sick V. (2016) Flow-pattern switching in a motored spark ignition engine, SAE Int. J. Eng. Res. 16, 323–339. [Google Scholar]
  • Montorfano A., Piscaglia F., Onorati A. (2015) An extension of the dynamic mesh handling with topological changes for LES of ICE in OpenFOAM, SAE Technical Paper 2015-01-0384. [Google Scholar]
  • Ameen M.M., Yang X., Kuo T.-W., Xue Q., Som S. (2015) LES for simulating the gas exchange process in a spark ignition engine, in: ICEF2015-1002, Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference, Houston, TX, 8–11 November, 2015. [Google Scholar]
  • Zhao H., Ladommatos N. (2001) Engine Combustion Instrumentation and Diagnostics, SAE International, Warrendale, PA, p. 842. [CrossRef] [Google Scholar]
  • Siemens PLM Software (2016) http://mdx.plm.automation.siemens.com/star-cd. [Google Scholar]
  • Colin O., Ducros F., Veynante D., Poinsot T. (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12, 1843–1863. [CrossRef] [Google Scholar]
  • Charlette F., Meneveau C., Veynante D. (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: non-dynamic formulation and initial tests, Combust. Flame 131, 159–180. [CrossRef] [Google Scholar]
  • Colin O., Truffin K. (2011) A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES), Proc. Combust. Inst. 33, 3097–3104. [Google Scholar]
  • Shekhawat Y. (2017) Large-eddy simulations of motored flow and combustion in a homogeneous-charge spark-ignition engine, Ph.D. thesis, The Pennsylvania State University, University Park, PA, USA. [Google Scholar]
  • d'Adamo A., Breda S., Fontanesi S., Cantore G. (2015) LES modelling of spark-ignition cycle-to-cycle variability on a highly downsized DISI engine, SAE Int. J. Eng. 8, 2029–2041. [Google Scholar]
  • Duclos J.M., Colin O. (2001) Arc and kernel tracking ignition model for 3D spark-ignition engine calculations, COMODIA, 343–350. [Google Scholar]
  • Verhoeven D. (1995) Spark heat transfer measurements in flowing gases, SAE Technical Paper 952450. [Google Scholar]
  • Petersen B.R., Ghandhi J.B. (2010) High resolution scalar dissipation and turbulence length scale measurements in an internal combustion engine, SAE Technical Paper 2010-01-0185. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.