Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 1, January–February 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Numéro d'article 7
Nombre de pages 16
DOI https://doi.org/10.2516/ogst/2017001
Publié en ligne 27 février 2017
  • Valiorgue P. (2012) Mass transfer in intermittent horizontal gas-liquid flow and application to photobioreactors, PhD Thesis, Université Claude Bernard Lyon I. [Google Scholar]
  • Lewis W.K., Whitman W.G. (1924) Principles of gas absorption, Ind. Eng. Chem. 16, 12, 1215–1220. [Google Scholar]
  • Turney D.E., Banerjee S. (2013) Air-water gas transfer and near-surface motions, J. Fluid Mech. 733, 588–624. [Google Scholar]
  • Tsumori H., Sugihara Y. (2007) Lengthscales of motions that control air-water gas transfer in grid-stirred turbulence, J. Mar. Syst. 66, 1-4, 6–18. [Google Scholar]
  • Herlina H., Jirka G.H. (2007) Turbulent gas flux measurements near the air-water interface in a grid-stirred tank, in Transport at the air-sea interface, environmental science and engineering, Garbe C.S., Handler R.A., Jähne B. (eds.), Springer, Berlin-Heidelberg, pp. 25–41. [Google Scholar]
  • Variano E.A., Cowen E.A. (2007) Quantitative imaging of CO2 transfer at an unsheared free surface, in Transport at the air-sea interface, environmental science and engineering, Garbe C.S., Handler R.A., Jähne B. (eds.), Springer, Berlin-Heidelberg, pp. 43–57. [CrossRef] [Google Scholar]
  • Asher W.E., Litchendorf T.M. (2008) Visualizing nearsurface concentration fluctuations using laser-induced fluorescence, Exp. Fluids 46, 2, 243–253. [Google Scholar]
  • Herlina H., Jirka G.H. (2008) Experiments on gas transfer at the air-water interface induced by oscillating grid turbulence, J. Fluid Mech. 594, 183–208. [Google Scholar]
  • Hasegawa Y., Kasagi N. (2009) Hybrid DNS/LES of high Schmidt number mass transfer across turbulent air-water interface, Int. J. Heat Mass Transfer 52, 3-4, 1012–1022. [CrossRef] [Google Scholar]
  • Janzen J.G., Herlina H., Jirka G.H., Schulz H.E., Gulliver J.S. (2010) Estimation of mass transfer velocity based on measured turbulence parameters, AIChE J. 56, 8, 2005–2017. [Google Scholar]
  • Kermani A., Khakpour H.R., Shen L., Igusa T. (2011) Statistics of surface renewal of passive scalars in free-surface turbulence, J. Fluid Mech. 678, 379–416. [Google Scholar]
  • Variano E.A., Cowen E.A. (2013) Turbulent transport of a high-Schmidt-number scalar near an air-water interface, J. Fluid Mech. 731, 259–287. [Google Scholar]
  • Herlina H., Wissink J.G. (2014) Direct numerical simulation of turbulent scalar transport across a flat surface, J. Fluid Mech. 744, 217–249. [Google Scholar]
  • Simoens S. (1992) Application du traitement et de l’analyse d'images à des phénomenes de dispersion et de mélange turbulent, Thèse de Docteur de l’Ecole Centrale de Lyon, Lyon, France. [Google Scholar]
  • Simoens S., Ayrault M. (1994) Concentration flux measurements of a scalar quantity in turbulent flows, Exp. Fluids 16, 3-4, 273–281. [Google Scholar]
  • Herlina H. (2005) Gas transfer at the air-water interface in a turbulent flow environment, PhD Thesis, Universitätsverlag Karlsruhe, Karlsruhe. [Google Scholar]
  • Higbie R. (1935) The rate of absorption of a pure gas into still liquid during short periods of exposure. AICHE Transactions, Vol. 37, p. 365–390. [Google Scholar]
  • Danckwerts P.V. (1951) Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem. 43, 6, 1460–1467. [Google Scholar]
  • Fortescue G.E., Pearson J.R.A. (1967) On gas absorption into a turbulent liquid, Chem. Eng. Sci. 22, 9, 1163–1176. [Google Scholar]
  • Banerjee S., Scott D.S., Rhodes E. (1968) Mass transfer to falling wavy liquid films in turbulent flow, Ind. Eng. Chem. Fundam. 7, 1, 2227. [CrossRef] [Google Scholar]
  • Lamont J.C., Scott D.S. (1970) An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J. 16, 4, 513–519. [Google Scholar]
  • Theofanous T.G. (1984) Conceptual models of gas exchange, in Gas transfer at water surfaces, number 2 in water science and technology library, Brutsaert W., Jirka G.H. (eds.), Springer, Netherlands, pp. 271–281. [CrossRef] [Google Scholar]
  • McCready M.J., Vassiliadou E., Hanratty T.J. (1986) Computer simulation of turbulent mass transfer at a mobile interface, AIChE J. 32, 7, 1108–1115. [Google Scholar]
  • Brumley B.H., Jirka G.H. (1987) Near-surface turbulence in a grid-stirred tank, J. Fluid Mech. 183, 235–263. [Google Scholar]
  • Chu C.R., Jirka G.H. (1992) Turbulent gas flux measurements below the air-water interface of a grid-stirred tank, Int. J. Heat Mass Transfer 35, 8, 1957–1968. [CrossRef] [Google Scholar]
  • Banerjee S., Lakehal D., Fulgosi M. (2004) Surface divergence models for scalar exchange between turbulent streams, Int. J. Multiphase Flow 30, 7-8, 963–977. [CrossRef] [Google Scholar]
  • Hunt J.C.R., Graham J.M.R. (1978) Free-stream turbulence near plane boundaries, J. Fluid Mech. 84, 2, 209–235. [Google Scholar]
  • Magnaudet J., Calmet I. (2006) Turbulent mass transfer through a flat shear-free surface, J. Fluid Mech. 553, 155–185. [Google Scholar]
  • Thompson S.M., Turner J.S. (1975) Mixing across an interface due to turbulence generated by an oscillating grid, J. Fluid Mech. 67, 2, 349–368. [Google Scholar]
  • De Silva I.P.D., Fernando H.J.S. (1994) Oscillating grids as a source of nearly isotropic turbulence, Phys. Fluids (1994-present) 6, 7, 2455–2464. [CrossRef] [Google Scholar]
  • McKenna S.P., McGillis W.R. (2004) Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank, Phys. Fluids (1994-present) 16, 9, 3499–3502. [CrossRef] [Google Scholar]
  • Hopfinger E.J., Toly J.-A. (1976) Spatially decaying turbulence and its relation to mixing across density interfaces, J. Fluid Mech. 78, 1, 155–175. [Google Scholar]
  • Mcdougall T.J. (1979) Measurements of turbulence in a zero-mean-shear mixed layer, J. Fluid Mech. 94, 3, 409–431. [Google Scholar]
  • Nokes R.I. (1988) On the entrainment rate across a density interface, J. Fluid Mech. 188, 185–204. [Google Scholar]
  • De Silva I.P.D., Fernando H.J.S. (1992) Some aspects of mixing in a stratified turbulent patch, J. Fluid Mech. 240, 601–625. [Google Scholar]
  • Xuequan E., Hopfinger E.J. (1986) On mixing across an interface in stably stratified fluid, J. Fluid Mech. 166, 227–244. [Google Scholar]
  • Matsunaga N., Sugihara Y., Komatsu T., Masuda A. (1999) Quantitative properties of oscillating-grid turbulence in a homogeneous fluid, Fluid Dyn. Res. 25, 3, 147–165. [Google Scholar]
  • Herlina H., Jirka G.H. (2004) Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank, Exp. Fluids 37, 3, 341–349. [Google Scholar]
  • Chiapponi L., Longo S., Tonelli M. (2012) Experimental study on oscillating grid turbulence and free surface fluctuation, Exp. Fluids 53, 5, 1515–1531. [Google Scholar]
  • Brocchini M., Peregrine D.H. (2001) The dynamics of strong turbulence at free surfaces. Part 1. Description, J. Fluid Mech. 449, 225–254. [CrossRef] [MathSciNet] [Google Scholar]
  • Prasad A.K. (2000) Stereoscopic particle image velocimetry, Exp. Fluids 29, 2, 103–116. [Google Scholar]
  • Prasad A.K., Jensen K. (1995) Scheimpflug stereocamera for particle image velocimetry in liquid flows, Appl. Opt. 34, 30, 7092. [CrossRef] [PubMed] [Google Scholar]
  • Martin M.M., Lindqvist L. (1975) The pH dependence of fluorescein fluorescence, J. Lumin. 10, 6, 381–390. [Google Scholar]
  • Walker D.A. (1987) A fluorescence technique for measurement of concentration in mixing liquids, J. Phys. E: Sci. Instrum. 20, 2, 217. [CrossRef] [Google Scholar]
  • Valiorgue P., Souzy N., El-Hajem M., Hadid H.B., Simoëns S. (2013) Concentration measurement in the wake of a free rising bubble using planar laser-induced fluorescence (PLIF) with a calibration taking into account fluorescence extinction variations, Exp. Fluids 54, 4, 1–10. [Google Scholar]
  • Souzy N. (2014) Experimental study and improvement of mass transfer in vertical bubble columns, PhD Thesis, Université Claude Bernard Lyon I. [Google Scholar]
  • Ayrault M., Simoens S. (1995) Turbulent concentration determination in gas flow using multiple CCD cameras, J. Flow Visualization Image Processing 2, 2, 195–208. [CrossRef] [Google Scholar]
  • Morge F. (2015) Étude du transfert de masse gaz-liquide dans un écoulement stratifié, Rapport de Stage – Master 2 MEGA Spécialité Mécanique des Fluides, INSA de Lyon, Lyon, France. [Google Scholar]
  • Escudié R., Liné A. (2003) Experimental analysis of hydrodynamics in a radially agitated tank, AIChE J. 49, 3, 585–603. [Google Scholar]
  • Vinçont J.-Y., Simoëns S., Ayrault M., Wallace J.M. (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle, J. Fluid Mech. 424, 127–167. [Google Scholar]
  • Lumley J.L. (1969) Drag reduction by additives, Annu. Rev. Fluid Mech. 1, 1, 367–384. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.