Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 1, January–February 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Article Number 7
Number of page(s) 16
Published online 27 February 2017
  • Valiorgue P. (2012) Mass transfer in intermittent horizontal gas-liquid flow and application to photobioreactors, PhD Thesis, Université Claude Bernard Lyon I.
  • Lewis W.K., Whitman W.G. (1924) Principles of gas absorption, Ind. Eng. Chem. 16, 12, 1215–1220. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Turney D.E., Banerjee S. (2013) Air-water gas transfer and near-surface motions, J. Fluid Mech. 733, 588–624. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Tsumori H., Sugihara Y. (2007) Lengthscales of motions that control air-water gas transfer in grid-stirred turbulence, J. Mar. Syst. 66, 1-4, 6–18. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Herlina H., Jirka G.H. (2007) Turbulent gas flux measurements near the air-water interface in a grid-stirred tank, in Transport at the air-sea interface, environmental science and engineering, Garbe C.S., Handler R.A., Jähne B. (eds.), Springer, Berlin-Heidelberg, pp. 25–41.
  • Variano E.A., Cowen E.A. (2007) Quantitative imaging of CO2 transfer at an unsheared free surface, in Transport at the air-sea interface, environmental science and engineering, Garbe C.S., Handler R.A., Jähne B. (eds.), Springer, Berlin-Heidelberg, pp. 43–57. [CrossRef]
  • Asher W.E., Litchendorf T.M. (2008) Visualizing nearsurface concentration fluctuations using laser-induced fluorescence, Exp. Fluids 46, 2, 243–253. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Herlina H., Jirka G.H. (2008) Experiments on gas transfer at the air-water interface induced by oscillating grid turbulence, J. Fluid Mech. 594, 183–208. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Hasegawa Y., Kasagi N. (2009) Hybrid DNS/LES of high Schmidt number mass transfer across turbulent air-water interface, Int. J. Heat Mass Transfer 52, 3-4, 1012–1022. [CrossRef]
  • Janzen J.G., Herlina H., Jirka G.H., Schulz H.E., Gulliver J.S. (2010) Estimation of mass transfer velocity based on measured turbulence parameters, AIChE J. 56, 8, 2005–2017.
  • Kermani A., Khakpour H.R., Shen L., Igusa T. (2011) Statistics of surface renewal of passive scalars in free-surface turbulence, J. Fluid Mech. 678, 379–416. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Variano E.A., Cowen E.A. (2013) Turbulent transport of a high-Schmidt-number scalar near an air-water interface, J. Fluid Mech. 731, 259–287. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Herlina H., Wissink J.G. (2014) Direct numerical simulation of turbulent scalar transport across a flat surface, J. Fluid Mech. 744, 217–249. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Simoens S. (1992) Application du traitement et de l’analyse d'images à des phénomenes de dispersion et de mélange turbulent, Thèse de Docteur de l’Ecole Centrale de Lyon, Lyon, France.
  • Simoens S., Ayrault M. (1994) Concentration flux measurements of a scalar quantity in turbulent flows, Exp. Fluids 16, 3-4, 273–281.
  • Herlina H. (2005) Gas transfer at the air-water interface in a turbulent flow environment, PhD Thesis, Universitätsverlag Karlsruhe, Karlsruhe.
  • Higbie R. (1935) The rate of absorption of a pure gas into still liquid during short periods of exposure. AICHE Transactions, Vol. 37, p. 365–390.
  • Danckwerts P.V. (1951) Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem. 43, 6, 1460–1467. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Fortescue G.E., Pearson J.R.A. (1967) On gas absorption into a turbulent liquid, Chem. Eng. Sci. 22, 9, 1163–1176. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Banerjee S., Scott D.S., Rhodes E. (1968) Mass transfer to falling wavy liquid films in turbulent flow, Ind. Eng. Chem. Fundam. 7, 1, 2227. [CrossRef]
  • Lamont J.C., Scott D.S. (1970) An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J. 16, 4, 513–519. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Theofanous T.G. (1984) Conceptual models of gas exchange, in Gas transfer at water surfaces, number 2 in water science and technology library, Brutsaert W., Jirka G.H. (eds.), Springer, Netherlands, pp. 271–281. [CrossRef]
  • McCready M.J., Vassiliadou E., Hanratty T.J. (1986) Computer simulation of turbulent mass transfer at a mobile interface, AIChE J. 32, 7, 1108–1115. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Brumley B.H., Jirka G.H. (1987) Near-surface turbulence in a grid-stirred tank, J. Fluid Mech. 183, 235–263. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Chu C.R., Jirka G.H. (1992) Turbulent gas flux measurements below the air-water interface of a grid-stirred tank, Int. J. Heat Mass Transfer 35, 8, 1957–1968. [CrossRef]
  • Banerjee S., Lakehal D., Fulgosi M. (2004) Surface divergence models for scalar exchange between turbulent streams, Int. J. Multiphase Flow 30, 7-8, 963–977. [CrossRef]
  • Hunt J.C.R., Graham J.M.R. (1978) Free-stream turbulence near plane boundaries, J. Fluid Mech. 84, 2, 209–235. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Magnaudet J., Calmet I. (2006) Turbulent mass transfer through a flat shear-free surface, J. Fluid Mech. 553, 155–185. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Thompson S.M., Turner J.S. (1975) Mixing across an interface due to turbulence generated by an oscillating grid, J. Fluid Mech. 67, 2, 349–368. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • De Silva I.P.D., Fernando H.J.S. (1994) Oscillating grids as a source of nearly isotropic turbulence, Phys. Fluids (1994-present) 6, 7, 2455–2464. [CrossRef]
  • McKenna S.P., McGillis W.R. (2004) Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank, Phys. Fluids (1994-present) 16, 9, 3499–3502. [CrossRef]
  • Hopfinger E.J., Toly J.-A. (1976) Spatially decaying turbulence and its relation to mixing across density interfaces, J. Fluid Mech. 78, 1, 155–175. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Mcdougall T.J. (1979) Measurements of turbulence in a zero-mean-shear mixed layer, J. Fluid Mech. 94, 3, 409–431. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Nokes R.I. (1988) On the entrainment rate across a density interface, J. Fluid Mech. 188, 185–204.
  • De Silva I.P.D., Fernando H.J.S. (1992) Some aspects of mixing in a stratified turbulent patch, J. Fluid Mech. 240, 601–625.
  • Xuequan E., Hopfinger E.J. (1986) On mixing across an interface in stably stratified fluid, J. Fluid Mech. 166, 227–244.
  • Matsunaga N., Sugihara Y., Komatsu T., Masuda A. (1999) Quantitative properties of oscillating-grid turbulence in a homogeneous fluid, Fluid Dyn. Res. 25, 3, 147–165.
  • Herlina H., Jirka G.H. (2004) Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank, Exp. Fluids 37, 3, 341–349.
  • Chiapponi L., Longo S., Tonelli M. (2012) Experimental study on oscillating grid turbulence and free surface fluctuation, Exp. Fluids 53, 5, 1515–1531.
  • Brocchini M., Peregrine D.H. (2001) The dynamics of strong turbulence at free surfaces. Part 1. Description, J. Fluid Mech. 449, 225–254. [CrossRef] [MathSciNet]
  • Prasad A.K. (2000) Stereoscopic particle image velocimetry, Exp. Fluids 29, 2, 103–116.
  • Prasad A.K., Jensen K. (1995) Scheimpflug stereocamera for particle image velocimetry in liquid flows, Appl. Opt. 34, 30, 7092. [CrossRef] [PubMed]
  • Martin M.M., Lindqvist L. (1975) The pH dependence of fluorescein fluorescence, J. Lumin. 10, 6, 381–390.
  • Walker D.A. (1987) A fluorescence technique for measurement of concentration in mixing liquids, J. Phys. E: Sci. Instrum. 20, 2, 217. [CrossRef]
  • Valiorgue P., Souzy N., El-Hajem M., Hadid H.B., Simoëns S. (2013) Concentration measurement in the wake of a free rising bubble using planar laser-induced fluorescence (PLIF) with a calibration taking into account fluorescence extinction variations, Exp. Fluids 54, 4, 1–10.
  • Souzy N. (2014) Experimental study and improvement of mass transfer in vertical bubble columns, PhD Thesis, Université Claude Bernard Lyon I.
  • Ayrault M., Simoens S. (1995) Turbulent concentration determination in gas flow using multiple CCD cameras, J. Flow Visualization Image Processing 2, 2, 195–208. [CrossRef]
  • Morge F. (2015) Étude du transfert de masse gaz-liquide dans un écoulement stratifié, Rapport de Stage – Master 2 MEGA Spécialité Mécanique des Fluides, INSA de Lyon, Lyon, France.
  • Escudié R., Liné A. (2003) Experimental analysis of hydrodynamics in a radially agitated tank, AIChE J. 49, 3, 585–603.
  • Vinçont J.-Y., Simoëns S., Ayrault M., Wallace J.M. (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle, J. Fluid Mech. 424, 127–167.
  • Lumley J.L. (1969) Drag reduction by additives, Annu. Rev. Fluid Mech. 1, 1, 367–384.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.