Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 1, January–February 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Article Number 7
Number of page(s) 16
Published online 27 February 2017
  • Valiorgue P. (2012) Mass transfer in intermittent horizontal gas-liquid flow and application to photobioreactors, PhD Thesis, Université Claude Bernard Lyon I. [Google Scholar]
  • Lewis W.K., Whitman W.G. (1924) Principles of gas absorption, Ind. Eng. Chem. 16, 12, 1215–1220. [Google Scholar]
  • Turney D.E., Banerjee S. (2013) Air-water gas transfer and near-surface motions, J. Fluid Mech. 733, 588–624. [Google Scholar]
  • Tsumori H., Sugihara Y. (2007) Lengthscales of motions that control air-water gas transfer in grid-stirred turbulence, J. Mar. Syst. 66, 1-4, 6–18. [Google Scholar]
  • Herlina H., Jirka G.H. (2007) Turbulent gas flux measurements near the air-water interface in a grid-stirred tank, in Transport at the air-sea interface, environmental science and engineering, Garbe C.S., Handler R.A., Jähne B. (eds.), Springer, Berlin-Heidelberg, pp. 25–41. [Google Scholar]
  • Variano E.A., Cowen E.A. (2007) Quantitative imaging of CO2 transfer at an unsheared free surface, in Transport at the air-sea interface, environmental science and engineering, Garbe C.S., Handler R.A., Jähne B. (eds.), Springer, Berlin-Heidelberg, pp. 43–57. [CrossRef] [Google Scholar]
  • Asher W.E., Litchendorf T.M. (2008) Visualizing nearsurface concentration fluctuations using laser-induced fluorescence, Exp. Fluids 46, 2, 243–253. [Google Scholar]
  • Herlina H., Jirka G.H. (2008) Experiments on gas transfer at the air-water interface induced by oscillating grid turbulence, J. Fluid Mech. 594, 183–208. [Google Scholar]
  • Hasegawa Y., Kasagi N. (2009) Hybrid DNS/LES of high Schmidt number mass transfer across turbulent air-water interface, Int. J. Heat Mass Transfer 52, 3-4, 1012–1022. [CrossRef] [Google Scholar]
  • Janzen J.G., Herlina H., Jirka G.H., Schulz H.E., Gulliver J.S. (2010) Estimation of mass transfer velocity based on measured turbulence parameters, AIChE J. 56, 8, 2005–2017. [Google Scholar]
  • Kermani A., Khakpour H.R., Shen L., Igusa T. (2011) Statistics of surface renewal of passive scalars in free-surface turbulence, J. Fluid Mech. 678, 379–416. [Google Scholar]
  • Variano E.A., Cowen E.A. (2013) Turbulent transport of a high-Schmidt-number scalar near an air-water interface, J. Fluid Mech. 731, 259–287. [Google Scholar]
  • Herlina H., Wissink J.G. (2014) Direct numerical simulation of turbulent scalar transport across a flat surface, J. Fluid Mech. 744, 217–249. [Google Scholar]
  • Simoens S. (1992) Application du traitement et de l’analyse d'images à des phénomenes de dispersion et de mélange turbulent, Thèse de Docteur de l’Ecole Centrale de Lyon, Lyon, France. [Google Scholar]
  • Simoens S., Ayrault M. (1994) Concentration flux measurements of a scalar quantity in turbulent flows, Exp. Fluids 16, 3-4, 273–281. [Google Scholar]
  • Herlina H. (2005) Gas transfer at the air-water interface in a turbulent flow environment, PhD Thesis, Universitätsverlag Karlsruhe, Karlsruhe. [Google Scholar]
  • Higbie R. (1935) The rate of absorption of a pure gas into still liquid during short periods of exposure. AICHE Transactions, Vol. 37, p. 365–390. [Google Scholar]
  • Danckwerts P.V. (1951) Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem. 43, 6, 1460–1467. [Google Scholar]
  • Fortescue G.E., Pearson J.R.A. (1967) On gas absorption into a turbulent liquid, Chem. Eng. Sci. 22, 9, 1163–1176. [Google Scholar]
  • Banerjee S., Scott D.S., Rhodes E. (1968) Mass transfer to falling wavy liquid films in turbulent flow, Ind. Eng. Chem. Fundam. 7, 1, 2227. [CrossRef] [Google Scholar]
  • Lamont J.C., Scott D.S. (1970) An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J. 16, 4, 513–519. [Google Scholar]
  • Theofanous T.G. (1984) Conceptual models of gas exchange, in Gas transfer at water surfaces, number 2 in water science and technology library, Brutsaert W., Jirka G.H. (eds.), Springer, Netherlands, pp. 271–281. [CrossRef] [Google Scholar]
  • McCready M.J., Vassiliadou E., Hanratty T.J. (1986) Computer simulation of turbulent mass transfer at a mobile interface, AIChE J. 32, 7, 1108–1115. [Google Scholar]
  • Brumley B.H., Jirka G.H. (1987) Near-surface turbulence in a grid-stirred tank, J. Fluid Mech. 183, 235–263. [Google Scholar]
  • Chu C.R., Jirka G.H. (1992) Turbulent gas flux measurements below the air-water interface of a grid-stirred tank, Int. J. Heat Mass Transfer 35, 8, 1957–1968. [CrossRef] [Google Scholar]
  • Banerjee S., Lakehal D., Fulgosi M. (2004) Surface divergence models for scalar exchange between turbulent streams, Int. J. Multiphase Flow 30, 7-8, 963–977. [CrossRef] [Google Scholar]
  • Hunt J.C.R., Graham J.M.R. (1978) Free-stream turbulence near plane boundaries, J. Fluid Mech. 84, 2, 209–235. [Google Scholar]
  • Magnaudet J., Calmet I. (2006) Turbulent mass transfer through a flat shear-free surface, J. Fluid Mech. 553, 155–185. [Google Scholar]
  • Thompson S.M., Turner J.S. (1975) Mixing across an interface due to turbulence generated by an oscillating grid, J. Fluid Mech. 67, 2, 349–368. [Google Scholar]
  • De Silva I.P.D., Fernando H.J.S. (1994) Oscillating grids as a source of nearly isotropic turbulence, Phys. Fluids (1994-present) 6, 7, 2455–2464. [CrossRef] [Google Scholar]
  • McKenna S.P., McGillis W.R. (2004) Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank, Phys. Fluids (1994-present) 16, 9, 3499–3502. [CrossRef] [Google Scholar]
  • Hopfinger E.J., Toly J.-A. (1976) Spatially decaying turbulence and its relation to mixing across density interfaces, J. Fluid Mech. 78, 1, 155–175. [Google Scholar]
  • Mcdougall T.J. (1979) Measurements of turbulence in a zero-mean-shear mixed layer, J. Fluid Mech. 94, 3, 409–431. [Google Scholar]
  • Nokes R.I. (1988) On the entrainment rate across a density interface, J. Fluid Mech. 188, 185–204. [Google Scholar]
  • De Silva I.P.D., Fernando H.J.S. (1992) Some aspects of mixing in a stratified turbulent patch, J. Fluid Mech. 240, 601–625. [Google Scholar]
  • Xuequan E., Hopfinger E.J. (1986) On mixing across an interface in stably stratified fluid, J. Fluid Mech. 166, 227–244. [Google Scholar]
  • Matsunaga N., Sugihara Y., Komatsu T., Masuda A. (1999) Quantitative properties of oscillating-grid turbulence in a homogeneous fluid, Fluid Dyn. Res. 25, 3, 147–165. [Google Scholar]
  • Herlina H., Jirka G.H. (2004) Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank, Exp. Fluids 37, 3, 341–349. [Google Scholar]
  • Chiapponi L., Longo S., Tonelli M. (2012) Experimental study on oscillating grid turbulence and free surface fluctuation, Exp. Fluids 53, 5, 1515–1531. [Google Scholar]
  • Brocchini M., Peregrine D.H. (2001) The dynamics of strong turbulence at free surfaces. Part 1. Description, J. Fluid Mech. 449, 225–254. [CrossRef] [MathSciNet] [Google Scholar]
  • Prasad A.K. (2000) Stereoscopic particle image velocimetry, Exp. Fluids 29, 2, 103–116. [Google Scholar]
  • Prasad A.K., Jensen K. (1995) Scheimpflug stereocamera for particle image velocimetry in liquid flows, Appl. Opt. 34, 30, 7092. [CrossRef] [PubMed] [Google Scholar]
  • Martin M.M., Lindqvist L. (1975) The pH dependence of fluorescein fluorescence, J. Lumin. 10, 6, 381–390. [Google Scholar]
  • Walker D.A. (1987) A fluorescence technique for measurement of concentration in mixing liquids, J. Phys. E: Sci. Instrum. 20, 2, 217. [CrossRef] [Google Scholar]
  • Valiorgue P., Souzy N., El-Hajem M., Hadid H.B., Simoëns S. (2013) Concentration measurement in the wake of a free rising bubble using planar laser-induced fluorescence (PLIF) with a calibration taking into account fluorescence extinction variations, Exp. Fluids 54, 4, 1–10. [Google Scholar]
  • Souzy N. (2014) Experimental study and improvement of mass transfer in vertical bubble columns, PhD Thesis, Université Claude Bernard Lyon I. [Google Scholar]
  • Ayrault M., Simoens S. (1995) Turbulent concentration determination in gas flow using multiple CCD cameras, J. Flow Visualization Image Processing 2, 2, 195–208. [CrossRef] [Google Scholar]
  • Morge F. (2015) Étude du transfert de masse gaz-liquide dans un écoulement stratifié, Rapport de Stage – Master 2 MEGA Spécialité Mécanique des Fluides, INSA de Lyon, Lyon, France. [Google Scholar]
  • Escudié R., Liné A. (2003) Experimental analysis of hydrodynamics in a radially agitated tank, AIChE J. 49, 3, 585–603. [Google Scholar]
  • Vinçont J.-Y., Simoëns S., Ayrault M., Wallace J.M. (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle, J. Fluid Mech. 424, 127–167. [Google Scholar]
  • Lumley J.L. (1969) Drag reduction by additives, Annu. Rev. Fluid Mech. 1, 1, 367–384. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.