Gas Breakthrough Pressure (GBP) through Claystones: Correlation with FIB/SEM Imaging of the Pore Volume
Corrélations entre Pression de Percée de Gaz (PPG) et imagerie FIB/MEB de roches argileuses (argilites)
1
École Centrale de Lille, Cité Scientifique, CS20048, 59651
Villeneuve d’Ascq Cedex – France
2
Changzhou Institute of Technology, Chang Zhou Gong Xue Yuan, 213000
Changzhou Shi, Jiangsu Sheng – China
3
Institut d’Électronique, de Micro-Électronique et de Nanotechnologie (IEMN), UMR CNRS 8520, BP 60069, 59652
Villeneuve d’Ascq – France
e-mail: catherine.davy@ec-lille.fr
* Corresponding author
This contribution uses six claystone samples imaged by FIB/SEM (Focused Ion Beam/Scanning Electron Microscopy), within micrometric volumes located in the clay matrix; their 3D connected pore network is identified down to 17-22 nm pore size. All samples are gently dried to minimize damage, and several are impregnated with Poly(Methyl MethAcrylate) (PMMA) resin to avoid further damage during FIB/SEM observations. Three pore volumes out of six are connected between two parallel end surfaces through crack-like pores; two are not connected between any two parallel end surfaces; only one sample has a connected pore network distinct from cracks.
By assuming varied pathways for gas to migrate by capillarity through the connected pore volumes (either by taking the shortest path, or through the largest path, or through the most frequent pore size, or by simulating the ingress of a non wetting fluid), we determine the Gas Breakthrough Pressure (GBP) through the initially fully liquid saturated claystone, from these micrometric volumes. The scale change (from the micrometric to the macroscopic scale) is assumed possible without changing the GBP value, and clay/water interactions are not accounted for. By comparison with GBP values measured in the laboratory on centimetric-sized claystone samples, it is concluded that breakthrough occurs most probably by capillary digitation; micro-cracks are the most probable pathways for gas, so that gas does not progress in a homogeneous manner through the claystone, as standard macroscopic finite element models would represent it. For intact claystone, predictions based on the capillary ingress of a non wetting fluid provide a GBP value ranging between 7-14 MPa.
Résumé
Six échantillons de roches argileuses (argilites) sont observés au FIF/MEB (Faisceau d’Ions Focalisé couplé à un Microscope Électronique à Balayage) au sein de volumes micrométriques situés dans la matrice argileuse (seule partie poreuse du matériau). Les échantillons sont séchés de façon à minimiser leur endommagement, et imprégnés ou non de résine polyméthacrylate de méthyle (PMMA) pour les maintenir lors des observations. Le réseau poreux connecté en 3D de ces échantillons est mesuré jusqu’à des tailles de pores de 17-22 nm de diamètre. Trois réseaux poreux sur six sont connectés par des pores de morphologie identique à des fissures ; deux réseaux poreux ne sont pas connectés entre deux faces paralléles de l’échantillon ; un seul réseau poreux (sur six) est connecté par des pores qui ne correspondent pas à des fissures.
En supposant différents modes de transport capillaire (via le chemin le plus court, via le chemin le plus large, via la taille de pore la plus fréquente, ou en simulant l’intrusion de fluide non mouillant) à l’échelle de ces réseaux poreux micrométriques, nous déterminons la Pression de Percée de Gaz (PPG) au travers de la roche initialement saturée de liquide. On suppose que le changement d’échelle est possible sans altération de la PPG, et que les interactions eau/argile sont négligeables. En comparant nos prédictions avec les valeurs expérimentales mesurées au laboratoire, nous montrons que la percée se produit avec la plus grande probabilité par digitation capillaire, via un volume limité de pores, qui ont une morphologie de fissures, et pas de façon homogène au travers de la roche argileuse, comme cela peut être représenté de façon simplifiée dans un modèle standard par Élements Finis. Pour le matériau intact, les prédictions basées sur l’intrusion capillaire de fluide non mouillant donnent une PPG variant entre 7 et 14 MPa.
© Y. Song et al., published by IFP Energies nouvelles, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.