Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 6, November–December 2015
Page(s) 1035 - 1049
DOI https://doi.org/10.2516/ogst/2012066
Publié en ligne 25 avril 2013
  • Gateau, P., Hénaut I., Barré L., Argillier J.F. (2004) Heavy oil dilution, Oil Gas Sci. Technol. 59, 503-509. [CrossRef] [EDP Sciences] [Google Scholar]
  • Saniere A., Hénaut I., Argillier J.F. (2004) Pipeline transportation of heavy oils, a strategic, economic and technological challenge, Oil Gas Sci. Technol. 59, 455-466. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jeribi M., Almir-Assad B., Langevin D., Hénaut I., Argillier J.F. (2002) Adsorption kinetics of asphaltenes at liquid interfaces, J. Colloid Interface Sci. 256, 268-272. [Google Scholar]
  • Trejo F., Ancheyta J., Rana M.S. (2009) Structural characterization of asphaltenes obtained from hydroprocessed crude oils by SEM and TEM, Energy Fuels 23, 429-439. [Google Scholar]
  • Spiecker P., Gawrys K., Trail C.H., Kilpatrick P. (2003) Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation, Colloids Surf. A: Physicochem. Eng. Aspects 220, 9-27. [Google Scholar]
  • McClements D.J. (2005) Food Emulsions, Principles, Practices and Techniques, 2nd ed., CRC Press, Boca Raon, FL. [Google Scholar]
  • Davarpanah L., Vahabzadeh F. (2012) Formation of oil-in-water (O/W) Pickering emulsions via complexation between β-cyclodextrin and selected organic solvents, Starch-Starke, accepted for publication. [Google Scholar]
  • Xia L., Lu S.H., Cao G. (2004) Stability and demulsification of emulsions stabilizes by asphaltenes or resins, J. Colloid Interface Sci. 271, 504-506. [CrossRef] [PubMed] [Google Scholar]
  • www.iooc.co.ir [Google Scholar]
  • Schorling P., Kessel D.G., Rahimian I. (1999) Influence of the crude oil resin/asphaltene ratio on the stability of oil/water emulsions, Colloids Surf. A: Physicochem. Eng. Aspects 152, 95-102. [CrossRef] [Google Scholar]
  • Ahmad N., Nassar A., Zaki N., Gharieb H. (1999) Formation of fluid heavy oil-in-water for pipeline transportation, Fuel 78, 593-600. [CrossRef] [Google Scholar]
  • Pomeranz Y., Meloan C. (1977) Food Analysis: Theory and Practice, Avi Publishing Company Inc., Westport, CT, USA. [Google Scholar]
  • Spiecker P., Gawrys K., Kilpatrick P. (2003) Aggregation and solubility behavior of asphaltenes and their subfractions, J. Colloid Interface Sci. 267, 178-193. [CrossRef] [PubMed] [Google Scholar]
  • Gawrys K., Kilpatrick P. (2004) Asphaltene aggregation: techniques for analysis, Instrum. Sci. Technol. 32, 247-253. [Google Scholar]
  • Bromberg J. (1984) Physical Chemistry, Allyn and Bacon Inc., New York. [Google Scholar]
  • Bouhadda Y., Bormann D., Sheu E., Bendedouch D., Krallafa A., Daaou M. (2007) Characterization of Algerian Hassi- Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction, Fuel 86, 1855-1864. [CrossRef] [Google Scholar]
  • West E.S., Todd W.R. (1961) Textbook of Biochemistry, 3rd ed., The Macmillan Company, New York. [Google Scholar]
  • Alboudwarej H., Beck J., Svrcek W.Y., Yarranton H.W., Akbarzadeh K. (2002) Sensitivity of asphaltene properties to separation techniques, Energy Fuels 16, 462-469. [Google Scholar]
  • ASTM D2007-03, Standard test method for characteristic groups in rubber extender and processing oils and other petroleum- derived oils by clay-gel absorption chromatographic method (2003). [Google Scholar]
  • ASTM D7169-05, Standard test method for boiling point distribution of samples with residues such as crude oils and atmospheric and vacuum residues by high temperature gas chromatography (2005). [Google Scholar]
  • ASTM D2887-08, Standard test method for boiling range distri bution of petroleum fractions by gas chromatography, (2008). [Google Scholar]
  • Green L.E, Schmauch L.J., Worman J.C. (1964) Simulated distillation by gas chromatography, Anal. Chem. 36, 1512-1516. [Google Scholar]
  • Clutter D.R., Petrakis L., Stenger R.L., Jensen R.K. (1972) Nuclear magnetic resonance spectrometry of petroleum fractions: Carbon-13 and proton nuclear magnetic resonance characterizations in terms of average molecular parameters, Anal. Chem. 44, 1395-1405. [Google Scholar]
  • McLean J.D., Kilpatrick P.K. (1997) Comparison of precipitation and extrography in the fractionation of crude oil residua, Energy Fuels 11, 570-585. [Google Scholar]
  • Trejo F., Centeno G., Ancheyta J. (2004) Precipitation, fractionation and characterization of asphaltenes from heavy and light crude oils, Fuel 83, 2169-2175. [CrossRef] [Google Scholar]
  • Luo P., Wang X., Gu Y. (2010) Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions, Fluid Phase Equilib. 291, 103-110. [Google Scholar]
  • Calemma V., Iwanski P., Nali M., Scotti R., Montanari L. (1995) Structural characterization of asphaltenes of different origins, Energy Fuels 9, 225-230. [Google Scholar]
  • Hasan Sh., Ghannam M., Esmail N. (2010) Heavy crude oil viscosity reduction and rheology for pipeline transportation, Fuel 89, 1095-1100. [CrossRef] [Google Scholar]
  • Langevin D., Poteau S., Henaut I., Argillier J.F. (2004) Crude oil emulsion properties and their application to heavy oil transportation, Oil Gas Sci. Technol. 59, 511-521. [Google Scholar]
  • Morrison R., Boyd R.N. (1977) Organic Chemistry, Allyn and Bacon Inc., New York. [Google Scholar]
  • Guo A.J., Ren Z.H., Tian L.Y., Wang Z.X., Li K.Q. (2007) Characterization of molecular change of heavy oil under mild thermal processing using FT-IR spectroscopy, J. Fuel. Chem. Technol. 35, 169-175. [Google Scholar]
  • Miller J.T., Fisher R.B., Thiyagarajan P., Winans R.E., Hunt J.E. (1998) Subfractionation and characterization of Mayan asphaltene, Energy Fuels 12, 1290-1298. [Google Scholar]
  • Ancheyta J., Centeno G., Trejo F., Marroquin G., Garcia J.A., Tenorio E., Torres A. (2002) Extraction and characterization of asphaltenes from different crude oils and solvents, Energy Fuels 16, 1121-1127. [Google Scholar]
  • Pavia D., Lampman G., Kriz G. (1976) Introduction to Organic Laboratory Techniques, a Contemporary Approach, W. B. Saunders Company, Philadelphia. [Google Scholar]
  • Leon O., Rogel E., Espidel J., Torres G. (2000) Asphaltene: tructural characterization, self-association and stability behavior, Energy Fuels 14, 6-10. [Google Scholar]
  • Bayramoglu G., Arica M.Y. (2008) Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets, Chem. Eng. J. 143, 133-140. [Google Scholar]
  • Perez-Hernandez R., Mendoza-Anaya D., Mondragon-Galicia G., Espinosa M.E., Rodriguez-Lugo V., Lozada M., ArenasAlatorre J. (2003) Microstructural study of asphaltene precipitated with methylene chloride and n-hexane, Fuel 82, 977-982. [CrossRef] [Google Scholar]
  • Coelho R.R., Hovell I., Monte M.B., Middea A., Soruza A.L. (2006) Characterisation of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modeling and FTIR techniques, Fuel Process. Technol. 87, 325-333. [Google Scholar]
  • Friberg S.E., Huafang Y., Midttun O., Sjoblom J., Aikens P.A. (1998) Location of crude oil resin molecules at an interface- model oil, Colloids Surf. A: Physicochem. Eng. Aspects 136, 43-49. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.