Dossier: Fluids-Polymers Interactions: Permeability, Durability
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
Page(s) 237 - 249
DOI https://doi.org/10.2516/ogst/2013145
Publié en ligne 17 décembre 2013
  • Garmabi H., Demarquette N.R., Kamal M.R. (1998) Effect of temperature and compatibilizer on interfacial tension of PE/PA-6 and PP/EVOH, Int. Polym. Process. 13, 1833–1911. [CrossRef] [Google Scholar]
  • Yeh J.T., Shih W.H., Huang S.S. (2002) Paint solvent permeation resistance of polyethylene, polyethylene/polyamide and polyethylene/modified polyamide bottles, Macromol. Mater. Eng. 287, 23–30. [CrossRef] [Google Scholar]
  • Correa C.A., Carvalho C.L., Bezzan A.L., Razzino C.A., Hage E. (2006) Structure property relationships in PA6 and PP copolymers blended by single and twin screw extrusion, Int. Polym. Proc. 21, 5, 440–448. [Google Scholar]
  • Dencheva N., Nunes T., Oliveira A.J., Denchev Z. (2005) Microfibrillar composites based on polyamide/polyethylene blends. 1. Structure investigations in oriented and isotropic polyamide 6, Polymer 46, 3, 887–901. [CrossRef] [Google Scholar]
  • Holsti-Miettinen R.M., Perttiä K.P., Seppälä J.V., Heino M.T. (1995) Oxygen barrier properties of polypropylene/polyamide 6 blends, J. Appl. Polym. Sci. 58, 1551–1560. [CrossRef] [Google Scholar]
  • Eceolaza S., Iriarte M., Uriarte C., Etxeberria A. (2009) Barrier property enhancement of polyamide 6 by blending with a polyhydroxyamino-ether resin, J. Polym. Sci. B: Polym. Phys. 47, 1625–1634. [CrossRef] [Google Scholar]
  • Guerrica-Echevarria G., Eguiazabal J.I., Nazabal J. (2003) Water sorption in polyamide 6/poly(amino-ether) blends. II. Mechanical behaviour, J. Macromol. Sci. Pure Appl. Chem. 40, 7, 705–714. [CrossRef] [Google Scholar]
  • Lafitte G., Espuche E., Gérard J.F. (2011) Polyamide 11 / Poly(Hydroxy Amino Ether) Blends: Influence of the blend composition and morphology on the barrier and mechanical properties, Eur. Polym. J. 47, 10, 1994–2002. [Google Scholar]
  • Wang B.B., Hao L.X., Wang W., Hu G.S. (2010) One step compatibilization of polyamide 6/poly(ethylene-1-octene) blends with maleic anhydride and peroxide, J. Polym. Res. 17, 6, 821–826. [CrossRef] [Google Scholar]
  • Jeziorska R. (2005) Reactive compatibilization of polyester elastomer/polyamide 6 blends with oxazoline functionalized low-density polyethylene, Polimery 50, 4, 291–297. [Google Scholar]
  • Monticciolo A., Cassagnau P., Michel A. (1998) Fibrillar morphology development of PE/PBT blends: rheology and solvent permeability, Polym. Eng. Sci. 38, 1, 1882–1888. [CrossRef] [Google Scholar]
  • Sarkissova M., Harrats C., Groeninckx G., Thomas S. (2004) Design and characterisation of microfibrillar reinforced composite materials based on PET/PA12 blends, Composites: Part A 35, 489–499. [CrossRef] [Google Scholar]
  • Evstatiev M., Schultz J.M., Fakirov S., Friedrich K. (2001) In situ fibrillar reinforced PET/PA-6/Pa-66 blend, Polym. Eng. Sci. 41, 2, 192–204. [CrossRef] [Google Scholar]
  • Sun L., Boo W.J., Sue H., Clearfield A. (2007) Preparation of alpha-zirconium phosphate nanoplatelets whit wide variations in aspect ratios, New J. Chem. 31, 39–43. [CrossRef] [Google Scholar]
  • Xu B., Zheng Q., Song Y., Shangguan Y. (2006) Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers, polymer 47, 2904–2910. [CrossRef] [Google Scholar]
  • Yano K., Usuki A., Okada A. (1997) Synthesis and properties of polyimide-clay hybrid films, J. Polym. Sci. A: Polym. Chem. 35, 2493–2498. [CrossRef] [Google Scholar]
  • Murase S., Inoue A., Miyashita Y., Kimura N., Nishio Y. (2002) Structural Characteristics and Moisture Sorption Behavior of Nylon6/Clay Hybrid Films, J. Polym. Sci. B: Polym. Phys. 40, 479–487. [CrossRef] [Google Scholar]
  • Deguchi R., Nishio T., Okada A. (1993) Process for preparing a polyamide composite material, US Patent 5248720. [Google Scholar]
  • Hasegawa N., Okamoto H., Kato M., Usuki A., Sato N. (2003) Nylon6/Na-montmorillonite nanocomposites prepared by compounding nylon 6 with Na-montmorillonite slurry, Polymer 44, 2933–2937. [CrossRef] [Google Scholar]
  • Leaversuch R. (2001) Nanocomposites broaden roles in automotive, barrier packaging, Plastics Technol. 47, 10–19. [Google Scholar]
  • Picard E., Vermogen A., Gérard J.F., Espuche E. (2007) Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: influence of the clay content and dispersion state. Consequences on modelling, J. Membr. Sci. 292, 133–144. [CrossRef] [Google Scholar]
  • Alexandre B., Colasse L., Langevin D., Médéric T., Aubry T., Chappey C., Marais S. (2010) Transport mechanisms of small molecules through polyamide 12/montmorillonite nanocomposites, J. Phys. Chem. B 114, 8827–8837. [CrossRef] [PubMed] [Google Scholar]
  • Picard E., Gérard J.F., Espuche E. (2008) Water transport properties of polyamide 6 based nanocomposites prepared by melt blending: on the importance of the clay dispersion state on the water transport properties at high water activity, J. Membr. Sci. 313, 1-2, 284–295. [CrossRef] [Google Scholar]
  • Alix S., Follain N., Tenn N., Alexandre B., Bourbigot S., Soulestin J., Marais S. (2012) Effect of highly exfoliated and oriented organoclays on the barrier properties of polyamide 6 based nanocomposites, J. Phys. Chem. Chem. C 116, 8, 4937–4947. [CrossRef] [Google Scholar]
  • Zulfiqar S., Ishaq M., Sarwar M.I. (2008) Effect of surface modification of montmorillonite on the properties of aromatic polyamide/clay nanocomposites, Surf. Interface Anal. 40, 8, 1195–1201. [CrossRef] [Google Scholar]
  • Carvalho J.W.C., Sarantopoulos C., Innocentini-Mei L.H. (2010) Nanocomposites-based polyolefins as alternative to improve barrier properties, J. Appl. Polym. Sci. 118, 3695–3700. [CrossRef] [Google Scholar]
  • Hong S.I., Rhim J.W. (2012) Preparation and properties of melt-intercalated linear low density polyethylene/Clay nanocomposite films prepared by blow extrusion, Food Sci. Technol. 48, 1, 43–51. [Google Scholar]
  • Waché R. (2004) Formulation et caractérisation de polyéthylènes charges avec des argyles. Propriétés barrière des nanocomposites obtenus, PhD Thesis, Université de Bretagne Occidentale, France. [Google Scholar]
  • Jacquelot E., Espuche E., Gérard J.F., Duchet J., Mazabraud P. (2006) Morphology and gas barrier properties of polyethylene based nanocomposites, J. Polym. Sci. B: Polym. Phys. 44, 431–440. [CrossRef] [Google Scholar]
  • Picard E., Vermogen A., Gérard J.F., Espuche E. (2008) Influence of the compatibilizer polarity and molar mass on the morphology and the gas barrier properties of polyethylene/clay nanocomposites, J. Polym. Sci. B: Polym. Phys. 46, 23, 2593–2604. [CrossRef] [Google Scholar]
  • Durmus A., Woo M., Kasgoz A., Macosko C.W., Tsapatsis M. (2007) Intercalated linear low density polyetrhylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as new type compatibiizer: structural, mechanical and barrier properties, Eur. Polym. J. 43, 3737–3749. [CrossRef] [Google Scholar]
  • Kato M., Okamoto H., Hasegawa N., Tsukigase A., Usuki A. (2003) Preparation and properties of polyethylene-clay hybrids, Polym. Eng. Sci. 43, 1312–1316. [CrossRef] [Google Scholar]
  • Rupp J.E.P. (2004) Polyethylene-layered silicate nanocomposites, PhD Thesis, Zürich, Switzerland. [Google Scholar]
  • Sanchez Valdes S., Lopez Quintanilla M.L., Ramirez Vargas E., Medellin Rodriguez F.J., Gutierrez Rodriguez J.M. (2006) Effect of ionomeric compatibilizer on clay dispersion in polyethylene/clay nanocomposites, Macromol. Mater. Eng. 291, 128–136. [CrossRef] [Google Scholar]
  • Shah R.K., Krishnaswamy R.K., Takahashi S., Paul D.R. (2006) Blown films of nanocomposites prepared from low density polyethylene and a sodium ionomer of poly(ethylene-co-methacrylic acid), Polymer 47, 6187–6201. [CrossRef] [Google Scholar]
  • Osman M.A., Atallah A. (2004) High-density polyethylene micro and nanocomposite: effect of particle shape, size and surface treatment on polymer cristallinity and gas permeability, Macromol. Rapid Comm. 25, 1540–1544. [CrossRef] [Google Scholar]
  • Nielsen L.E. (1967) Models for the permeability of filled polymer systems, J. Macromol. Sci. Chem. A 1, 929–942. [CrossRef] [Google Scholar]
  • Gusev A.A., Lusti H.R. (2001) Rational Design of nanocomposites for barrier applications, Adv. Mater. 13-21, 1641–1643. [CrossRef] [Google Scholar]
  • Fredrickson G.H., Bicerano J. (1999) Barrier properties of oriented disk composites, J. Chem. Phys. 110-4, 2181–2188. [CrossRef] [Google Scholar]
  • Lape N.K., Nuxoll E.N., Cussler E.L. (2004) Polydisperse flakes in barrier films, J. Membr. Sci. 236, 29–37. [CrossRef] [Google Scholar]
  • Bharadwaj R.K. (2001) Modeling the barrier properties of polymer-layered silicate nanocomposite, Macromolecules 34, 9189–9192. [CrossRef] [Google Scholar]
  • Yang C., Smyrl W.H., Cussler E.L. (2004) Flake alignment in composite coatings, J. Membr. Sci. 231, 1–12. [CrossRef] [Google Scholar]
  • Gain O., Espuche E., Pollet E., Alexandre M., Dubois Ph (2005) Gas barrier properties of poly (ε−caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions, J. Polym. Sci. B Polym. Phys. 43, 205–214. [CrossRef] [Google Scholar]
  • Miltner H.E., Assche G.V., Pozsgay A., Pukansky B., Van Mele B. (2006) Restricted chain segment mobility in poly(amide) 6/clay nanocomposites evidenced by quasi-isothermal crystallization, Polymer 47, 826–835. [CrossRef] [Google Scholar]
  • Adame D., Beall G.W. (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion, Appl. Clay Sci. 42, 545–552. [CrossRef] [Google Scholar]
  • Sabard M., Gouanvé F., Espuche E., Fulchiron R., Seytre G., Trouillet-fonti L., Fillot L.-A. (2012) Influence of film processing conditions on the morphology of polyamide 6: consequences on water and ethanol sorption properties, J. Membr. Sci. 415-416, 670–680. [CrossRef] [Google Scholar]
  • Beall G.W. (2000) New conceptual model for interpreting nanocomposite behaviour, Pinnavaia T.J., Beall G.W. (Des.), Polymer-clay nanocomposites, Wiley, New York, pp. 267–279. [Google Scholar]
  • Picard E., Gauthier H., Gérard J.F., Espuche E. (2007) Influence of the interlayer cations on the surface characteristics of montmorillonites. Consequences on the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites, J. Colloid Interface Sci. 307, 364–376. [CrossRef] [PubMed] [Google Scholar]
  • Wunderlich B. (1973) A Subsidiary of Harcourt Brace Jovanovich Publishers, Chap IV The defect crystal, in Macromolecular Physics, Vol I Crystal structure, morphology, defects, Academic Press, New York, London, pp. 380–511. [Google Scholar]
  • Liu L., Qi Z., Zhu X. (1999) Studies on Nylon 6/Clay Nanocomposites by Melt-Intercalation Process, J. Appl. Polym. Sci. 71, 1133–1138. [CrossRef] [Google Scholar]
  • Boucard S. (2004) Développement de formulations polyoléfines/silicates lamellaires : contrôle de la nanostructuration par la gestion des interactions physico-chimiques et le procédé de mise en œuvre dans le fondu, PhD Thesis, INSA de Lyon, France. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.