Dossier: Post Combustion CO2 Capture
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1021 - 1034
DOI https://doi.org/10.2516/ogst/2013154
Publié en ligne 11 avril 2014
  • Alix P., Raynal L. (2008) Liquid Distribution and Liquid Hold-up in Modern High Capacity Packings, Chem. Eng. Res. Des. 86, 585–591. [CrossRef] [Google Scholar]
  • Alix P., Raynal L. (2009) Pressure Drop and Mass Transfer of a High Capacity Random Packing. Application to CO2 Post-combustion Capture, Energy Procedia 1, 845–852. [CrossRef] [Google Scholar]
  • Alix P., Raynal L., Abbe F., Meyer M., Prevost M., Rouzineau D. (2011) Mass transfer and hydrodynamic characteristics of new carbon carbon packing: Application to CO2 post-combustion capture, Chem. Eng. Res. Des. 89, 1658–1668. [CrossRef] [Google Scholar]
  • Aroonwilas A., Tontiwachwuthikul P., Chakma A. (2001) Effects of operating and design parameters on CO2 absorption in columns with structured packings, Sep. Purifi. Technol. 24, 403–411. [CrossRef] [Google Scholar]
  • Ataki A. (2006) Wetting of Structured Packing Elements – CFD and Experiment, PhD Thesis, Technical University of Kaiserlautern. [Google Scholar]
  • Chambers S., Schultes M. (2006) How to surpass conventional and high capacity structured packings with Raschig Super-Pak, Distillation and Absorption conference, 4–6 Sept., London, 241–251. [Google Scholar]
  • Danckwerts P.V. (1970) Gas-Liquid Reactions, McGraw-Hill, New-York. [Google Scholar]
  • De Brito M.H., Von Stockar U., Bangester A.M., Bomio P., Laso M. (1994) Effective mass transfer area in a pilot plant column equipped with structured packing and with ceramic rings, Ind. Eng. Chem. Res. 33, 647–656. [CrossRef] [Google Scholar]
  • Duss M., Meierhofer H., Dale E. (2001) Effective Interfacial area and liquid holdup of nutter rings at high liquid loads, Chem. Eng. Technol. 24, 716–723. [CrossRef] [Google Scholar]
  • Fair J.R., Bravo J.L. (1990) Distillation columns containing structured packing, Chem. Eng. Prog. 86, 19–29. [Google Scholar]
  • Feron P.H.M., Abu-Zahra M., Alix P., Biede O., Broutin P., de Jong H., Kittel J., Knudsen J., Raynal L., Vilhelmsen P.J. (2007) 3rd International Conference on Clean Coal Technologies for our Future, Caligari, Italy. [Google Scholar]
  • Haroun Y., Legendre D., Raynal L. (2010a) Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method, Chem. Eng. Sci. 65, 351–356. [CrossRef] [Google Scholar]
  • Haroun Y., Legendre D., Raynal L. (2010b) Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film, Chem. Eng. Sci. 65, 2896–2909. [CrossRef] [Google Scholar]
  • Haroun Y., Raynal L., Legendre D. (2012) Mass transfer and liquid hold-up determination in structured packing by CFD, Chem. Eng. Sci. 75, 342–348. [CrossRef] [Google Scholar]
  • IMTP Brochure (2003) Bulletin KGIMTP-I 2M0303B. Available at http://www.koch-glitsch.com/masstransfer/pages/IMTP_metal.aspx. [Google Scholar]
  • Kehrer F., Spiegel L., Kolesnikov E., Choo P. (2006) Experimental investigation and modelling of Sulzer I-Ring hydraulics, Chem. Eng. Res. Des. 84, 1075–1080. [CrossRef] [Google Scholar]
  • Knudsen J.N., Vilhemsen P.J., Jensen J.N., Biede O. (2006) VGB Conference, Chemie in Kraftwerk, Germany, 11–12 Oct. [Google Scholar]
  • Knudsen J.N. (2009) European Conference on CCS research, 10-11 Feb., Oslo, Norway. [Google Scholar]
  • Kolev N., Nakov S.V., Ljutzkanov L., Kolev D. (2006) Effective Area of a Highly Effective Random Packing, Chem. Eng. Process.: Process Intensification 45, 429–436. [CrossRef] [Google Scholar]
  • Linek V., Petricek P., Benes P., Brun R. (1984) Effective interfacial area and liquid side mass-transfer coefficients in absorption columns packed with hydrophilized and untreated plastic packings Trans. IChemE, Part A, Chem. Eng. Res. Des. 62, 13. [Google Scholar]
  • Linek V., Moucha T., Rejl F.J. (2001) Hydraulic and mass transfer characteristics of packings for absorption and distillation columns. Rauschert-Metall-Sattel-Rings, Trans. IChemE 79, 725–732. [CrossRef] [Google Scholar]
  • Menon A., Duss M. (2011) Sulzer – reducing the energy penalty for post-combustion CO2 capture, Carbon Capture J. Sept–Oct, 2–5. [Google Scholar]
  • Nakov S.V., Kolev N., Ljutzkanov L., Kolev D. (2007) Comparison of the effective area of some highly effective packings, Chem. Eng. Process.: Process Intensification 46, 1385–1390. [CrossRef] [Google Scholar]
  • Olujic Z. (1999) Effect of Column Diameter on Pressure Drop of a Corrugated Sheet Structured Packing, Chem. Eng. Res. Des. 77, 505–510. [CrossRef] [Google Scholar]
  • Petre C.F., Larachi F., Illiuta I., Grandjean B.P.A. (2003) Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling, Chem. Eng. Sci. 58, 163–177. [CrossRef] [Google Scholar]
  • Pohorecki R., Moniuk W. (1988) Kinetics of reaction between carbon dioxide and hydroxylions in aqueous electrolyte solutions, Chem. Eng. Sci. 43, 1677–1684. [CrossRef] [Google Scholar]
  • Raynal L., Royon-Lebeaud A. (2007) A multi-scale approach for CFD calculations of gas-liquid flow within large size column equipped with structured packing, Chem. Eng. Sci. 62, 7196–7204. [CrossRef] [Google Scholar]
  • Raynal L., Boyer C., Ballaguet J.P. (2004) Liquid hold-up and pressure drop determination in structured packing with CFD simulation, Can. J. Chem. Eng. 82, 871–879. [CrossRef] [Google Scholar]
  • Raynal L., Gomez A., Caillat B., Haroun Y. (2013) CO2 Capture Cost Reduction: use of a Multiscale Simulations Strategy for a Multiscale Issue, Oil Gas Sci. Technol. DOI: 10.2516/ogst/2012104. [Google Scholar]
  • Seibert F., Wilson I., Lewis C., Rochelle G. (2005) Effective Gas/Liquid Contact Area of Packing for CO2 absorption/stripping, Greenhouse Gas Control Technol. 2, 1925–1928. [CrossRef] [Google Scholar]
  • Spiegel L., Meier W. (1992) A generalized pressure drop model for structured packings, Distillation and Absorption, IChemE Symp. Series n° 128, B85–B94. [Google Scholar]
  • Spiegel L., Meier W. (1994) Capacity and pressure drop of structured packings at very high liquid loads, AIChE 1994 Spring National Meeting, 17–21 April. [Google Scholar]
  • Tsai R.E. (2010) Mass Transfer Area of Structured Packing, PhD Thesis, University of Texas, Austin. [Google Scholar]
  • Tsai R.E., Schultheiss P., Kettner A., Lewis J.C., Seibert A.F., Eldrigge R.B., Rochelle G.T. (2008) Influence of Surface Tension on Effective Packing Area, Ind. Eng. Chem. Res. 47, 1253–1260. [CrossRef] [Google Scholar]
  • Tsai R.E., Seibert A.F., Eldridge R.B., Rochelle G.T. (2011) A Dimensionless Model for Predicting the Mass-Transfer Area of Structured packing, AIChE J. 57, 1173–1184. [CrossRef] [Google Scholar]
  • Wallis G.B. (1969) One-dimensional two-phase flow, McGraw-Hill, New York. [Google Scholar]
  • Wilson I.D. (2004) Gas-Liquid Contact Area of Random and Structured Packing, PhD Thesis, University of Texas, Austin. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.