Dossier: Post Combustion CO2 Capture
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1035 - 1045
DOI https://doi.org/10.2516/ogst/2012046
Publié en ligne 15 mai 2013
  • IPCC (2007) 4th Assessment Report (AR4), Climate Change 2007: Synthesis Report. [Google Scholar]
  • Energy-Related Carbon Dioxide Emissions, International Energy Outlook 2010, available at: http://www.eia.doe.gov/oiaf/ieo/emissions.html, accessed on 9 March 2012. [Google Scholar]
  • European Commission, Analysis of options to move beyond 20% greenhouse gas emission reductions and assessing the risk of carbon leakage, available on http://ec.europa.eu/clima/policies/package/index_en.htm, accessed on 9 March 2012. [Google Scholar]
  • Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C. (2010) Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Design 89, 1609–1624. [CrossRef] [Google Scholar]
  • Tobiesen F.A., Svendsen H.F., Juliussen O. (2007) Experimental Validation of a Rigorous Absorption Model for CO2 postcombustion capture, AIChE J. 53, 4, 846–865. [CrossRef] [Google Scholar]
  • Abu-Zahra M.R.M., Schneiders L.H.J., Niederer J.P.M., Feron P.H.M., Versteeg G.F. (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine, Int. J. Greenhouse Gas Control 1, 37–46. [CrossRef] [Google Scholar]
  • Gabelman A., Hwang S.T. (1999) Hollow fiber membrane contactors, J. Membr. Sci. 159, 61–106. [CrossRef] [Google Scholar]
  • Mansourizadeh A., Ismail A.F. (2009) Hollow fiber gas-liquid membrane contactors for acid gas capture: A review, J. Hazardous Mater. 17, 38–53. [CrossRef] [Google Scholar]
  • Mansourizadeh A., Ismail A.F., Matsuura T. (2010) Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor, J. Membr. Sci. 353, 192–200. [CrossRef] [Google Scholar]
  • Dindore V.Y., Brilman D.W.F., Versteeg G.F. (2005) Hollow fiber membrane contactor as a gas-liquid model contactor, Chem. Eng. Sci. 60, 467–479. [CrossRef] [Google Scholar]
  • Qi Z., Cussler E.L. (1985) Microporous Hollow fibers for gas absorption, J. Membr. Sci. 23, 321–332. [CrossRef] [Google Scholar]
  • Bottino A., Capannelli G., Comite A., Di Felice R., Firpo R. (2008) CO2 removal from a gas stream by membrane contactor, Sep. Purifi. Technol. 59, 85–90. [CrossRef] [Google Scholar]
  • Lu J.G., Zheng Y.F., Cheng M.D., Wang L.J. (2007) Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions, J. Membr. Sci. 289, 138–149. [CrossRef] [Google Scholar]
  • Mavroudi M., Kaldis S.P., Sakellaropoulos G.P. (2003) Reduction of CO2 emissions by a membrane contacting process, Fuel 82, 2153–2159. [CrossRef] [Google Scholar]
  • Li J.L., Chen B.H. (2005) CO2 absorption using chemicals solvents in hollow fiber membrane contactors, Sep. Purifi. Technol. 41, 109–122. [CrossRef] [Google Scholar]
  • Karoor S., Sirkar K.K. (1993) Gas absorption studies in microporous hollow fiber membranes modules, Ind. Eng. Chem. Res. 32, 674–684. [CrossRef] [Google Scholar]
  • Al-Marzouqi M., El-Naas M.H., Marzouk S.A.M., Al-Zarooni M.A., Abdullatif N., Faiz R. (2008) Modeling of CO2 absorption in membrane contactors, Sep. Purifi. Technol. 59, 286–293. [CrossRef] [Google Scholar]
  • Lee Y., Noble R.D., Yeom B.Y., Park Y.I., Lee K.H. (2001) Analysis of CO2 removal by hollow fiber membrane contactors, J. Membr. Sci. 194, 57–67. [CrossRef] [Google Scholar]
  • Wang R., Li D.F., Liang D.T. (2004) Modelling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors, Chem. Eng. Process. 43, 849–856. [CrossRef] [Google Scholar]
  • Boucif N., Favre E., Roizard D. (2008) CO2 capture in HFMM contactor with typical amine solutions: A numerical analysis, Chem. Eng. Sci. 63, 5375–5385. [CrossRef] [Google Scholar]
  • Porcheron F., Drozdz S. (2009) Hollow fiber membrane contactor transient experiments for the characterization of gas/liquid thermodynamics and mass transfer properties, Chem. Eng. Sci. 64, 265–275. [CrossRef] [Google Scholar]
  • Shirazian S., Moghadassi A., Moradi S. (2009) Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions, Simul. Modell. Pract. Theory 17, 708–718. [CrossRef] [Google Scholar]
  • Zhang H.Y., Wang R., Liang D.T., Tay J.H. (2008) Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption, J. Membr. Sci. 308, 162–170. [CrossRef] [Google Scholar]
  • Malek A., Teo W.K. (1997) Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions, Ind. Eng. Chem. Res. 36, 784–793. [CrossRef] [Google Scholar]
  • Lu J.G., Zheng Y.F., Cheng M.D. (2008) Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption, J. Membr. Sci. 308, 180–190. [CrossRef] [Google Scholar]
  • Faiz R., Al-Marzouqi M. (2009) Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors, J. Membr. Sci. 342, 269–278. [CrossRef] [Google Scholar]
  • Boucif N., Favre E., Roizard D., Belloul M. (2008) Hollow fiber membrane contactor for hydrogen sulfide odor control, AIChE J. 54, 122–131. [CrossRef] [Google Scholar]
  • Nguyen P.T., Roizard D., Thomas D., Favre E. (2010) Gas permeability: A simple, novel and efficient method for testing membrane material/solvent compatibility for membrane contactors applications, Desalination Water Treatment 14, 7–14. [CrossRef] [Google Scholar]
  • Dindore V.Y., Brilman D.W.F., Feron P.H.M., Versteeg G.F. (2004) CO2 absorption at elevated pressures using a hollow fiber membrane contactor, J. Membr. Sci. 235, 99–109. [CrossRef] [Google Scholar]
  • Chen S.C., Lin S.H., Wang Y.H., Hsiao H.C. (2011) Chemical absorption of carbon dioxide with asymmetrically heated polytetrafluoroethylene membranes, J. Environ. Manage. 92, 1083–1090. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi N., Furuta Y., Fukunaga H., Takatsuka T., Mano H., Fujioka Y. (2011) Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor, Energy Procedia 4, 693–698. [CrossRef] [Google Scholar]
  • Hedayat M., Soltanieh M., Mousavi S.A. (2011) Simultaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines, J. Membr. Sci. 377, 191–197. [CrossRef] [Google Scholar]
  • Boributh S., Assabumrungrat S., Laosiripojana N., Jiraratananon R. (2011) A modelling study on the effects of membrane characteristics and operating parameters on physical absorption of CO2 by hollow fiber membrane contactor, J. Membr. Sci. 380, 21–33. [CrossRef] [Google Scholar]
  • deMontigny D., Tontiwachwuthikul P., Chakma A. (2005) Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption, J. Membr. Sci. 277, 99–107. [CrossRef] [Google Scholar]
  • Nishikawa N., Ishibashi M., Ohta H., Akutsu N., Matsumoto H., Kamata T., Kitamura H. (1995) CO2 removal by hollow fiber gas liquid contactor, Energy Convers Manage 36, 415–418. [CrossRef] [Google Scholar]
  • Khaisri S., deMontigny D., Tontiwachwuthikul P., Jiraratananon R. (2010) Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor, Sep. Purifi. Technol. 65, 290–297. [CrossRef] [Google Scholar]
  • Keshavarz P., Ayatollahi S., Fathikalajahi J. (2008) Mathematical modeling of gas-liquid membrane contactors using random distribution of fibers, J. Membr. Sci. 325, 98–108. [CrossRef] [Google Scholar]
  • Happel J. (1959) Viscous flow relative to arrays of cylinders, AIChE J. 5, 174–177. [CrossRef] [Google Scholar]
  • Blauwhoff P.M.M., Versteeg G.F., van Swaaij W.P.M. (1982) A study on the reaction between CO2 and alkanolamines in aqueous solutions, Chem. Eng. Sci. 39, 2, 207–225. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.