Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1035 - 1045
DOI https://doi.org/10.2516/ogst/2012046
Published online 15 May 2013
  • IPCC (2007) 4th Assessment Report (AR4), Climate Change 2007: Synthesis Report. [Google Scholar]
  • Energy-Related Carbon Dioxide Emissions, International Energy Outlook 2010, available at: http://www.eia.doe.gov/oiaf/ieo/emissions.html, accessed on 9 March 2012. [Google Scholar]
  • European Commission, Analysis of options to move beyond 20% greenhouse gas emission reductions and assessing the risk of carbon leakage, available on http://ec.europa.eu/clima/policies/package/index_en.htm, accessed on 9 March 2012. [Google Scholar]
  • Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C. (2010) Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Design 89, 1609–1624. [CrossRef] [Google Scholar]
  • Tobiesen F.A., Svendsen H.F., Juliussen O. (2007) Experimental Validation of a Rigorous Absorption Model for CO2 postcombustion capture, AIChE J. 53, 4, 846–865. [CrossRef] [Google Scholar]
  • Abu-Zahra M.R.M., Schneiders L.H.J., Niederer J.P.M., Feron P.H.M., Versteeg G.F. (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine, Int. J. Greenhouse Gas Control 1, 37–46. [CrossRef] [Google Scholar]
  • Gabelman A., Hwang S.T. (1999) Hollow fiber membrane contactors, J. Membr. Sci. 159, 61–106. [CrossRef] [Google Scholar]
  • Mansourizadeh A., Ismail A.F. (2009) Hollow fiber gas-liquid membrane contactors for acid gas capture: A review, J. Hazardous Mater. 17, 38–53. [CrossRef] [Google Scholar]
  • Mansourizadeh A., Ismail A.F., Matsuura T. (2010) Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor, J. Membr. Sci. 353, 192–200. [CrossRef] [Google Scholar]
  • Dindore V.Y., Brilman D.W.F., Versteeg G.F. (2005) Hollow fiber membrane contactor as a gas-liquid model contactor, Chem. Eng. Sci. 60, 467–479. [CrossRef] [Google Scholar]
  • Qi Z., Cussler E.L. (1985) Microporous Hollow fibers for gas absorption, J. Membr. Sci. 23, 321–332. [CrossRef] [Google Scholar]
  • Bottino A., Capannelli G., Comite A., Di Felice R., Firpo R. (2008) CO2 removal from a gas stream by membrane contactor, Sep. Purifi. Technol. 59, 85–90. [CrossRef] [Google Scholar]
  • Lu J.G., Zheng Y.F., Cheng M.D., Wang L.J. (2007) Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions, J. Membr. Sci. 289, 138–149. [CrossRef] [Google Scholar]
  • Mavroudi M., Kaldis S.P., Sakellaropoulos G.P. (2003) Reduction of CO2 emissions by a membrane contacting process, Fuel 82, 2153–2159. [CrossRef] [Google Scholar]
  • Li J.L., Chen B.H. (2005) CO2 absorption using chemicals solvents in hollow fiber membrane contactors, Sep. Purifi. Technol. 41, 109–122. [CrossRef] [Google Scholar]
  • Karoor S., Sirkar K.K. (1993) Gas absorption studies in microporous hollow fiber membranes modules, Ind. Eng. Chem. Res. 32, 674–684. [CrossRef] [Google Scholar]
  • Al-Marzouqi M., El-Naas M.H., Marzouk S.A.M., Al-Zarooni M.A., Abdullatif N., Faiz R. (2008) Modeling of CO2 absorption in membrane contactors, Sep. Purifi. Technol. 59, 286–293. [CrossRef] [Google Scholar]
  • Lee Y., Noble R.D., Yeom B.Y., Park Y.I., Lee K.H. (2001) Analysis of CO2 removal by hollow fiber membrane contactors, J. Membr. Sci. 194, 57–67. [CrossRef] [Google Scholar]
  • Wang R., Li D.F., Liang D.T. (2004) Modelling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors, Chem. Eng. Process. 43, 849–856. [CrossRef] [Google Scholar]
  • Boucif N., Favre E., Roizard D. (2008) CO2 capture in HFMM contactor with typical amine solutions: A numerical analysis, Chem. Eng. Sci. 63, 5375–5385. [CrossRef] [Google Scholar]
  • Porcheron F., Drozdz S. (2009) Hollow fiber membrane contactor transient experiments for the characterization of gas/liquid thermodynamics and mass transfer properties, Chem. Eng. Sci. 64, 265–275. [CrossRef] [Google Scholar]
  • Shirazian S., Moghadassi A., Moradi S. (2009) Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions, Simul. Modell. Pract. Theory 17, 708–718. [CrossRef] [Google Scholar]
  • Zhang H.Y., Wang R., Liang D.T., Tay J.H. (2008) Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption, J. Membr. Sci. 308, 162–170. [CrossRef] [Google Scholar]
  • Malek A., Teo W.K. (1997) Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions, Ind. Eng. Chem. Res. 36, 784–793. [CrossRef] [Google Scholar]
  • Lu J.G., Zheng Y.F., Cheng M.D. (2008) Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption, J. Membr. Sci. 308, 180–190. [CrossRef] [Google Scholar]
  • Faiz R., Al-Marzouqi M. (2009) Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors, J. Membr. Sci. 342, 269–278. [CrossRef] [Google Scholar]
  • Boucif N., Favre E., Roizard D., Belloul M. (2008) Hollow fiber membrane contactor for hydrogen sulfide odor control, AIChE J. 54, 122–131. [CrossRef] [Google Scholar]
  • Nguyen P.T., Roizard D., Thomas D., Favre E. (2010) Gas permeability: A simple, novel and efficient method for testing membrane material/solvent compatibility for membrane contactors applications, Desalination Water Treatment 14, 7–14. [CrossRef] [Google Scholar]
  • Dindore V.Y., Brilman D.W.F., Feron P.H.M., Versteeg G.F. (2004) CO2 absorption at elevated pressures using a hollow fiber membrane contactor, J. Membr. Sci. 235, 99–109. [CrossRef] [Google Scholar]
  • Chen S.C., Lin S.H., Wang Y.H., Hsiao H.C. (2011) Chemical absorption of carbon dioxide with asymmetrically heated polytetrafluoroethylene membranes, J. Environ. Manage. 92, 1083–1090. [CrossRef] [PubMed] [Google Scholar]
  • Takahashi N., Furuta Y., Fukunaga H., Takatsuka T., Mano H., Fujioka Y. (2011) Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor, Energy Procedia 4, 693–698. [CrossRef] [Google Scholar]
  • Hedayat M., Soltanieh M., Mousavi S.A. (2011) Simultaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines, J. Membr. Sci. 377, 191–197. [CrossRef] [Google Scholar]
  • Boributh S., Assabumrungrat S., Laosiripojana N., Jiraratananon R. (2011) A modelling study on the effects of membrane characteristics and operating parameters on physical absorption of CO2 by hollow fiber membrane contactor, J. Membr. Sci. 380, 21–33. [CrossRef] [Google Scholar]
  • deMontigny D., Tontiwachwuthikul P., Chakma A. (2005) Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption, J. Membr. Sci. 277, 99–107. [CrossRef] [Google Scholar]
  • Nishikawa N., Ishibashi M., Ohta H., Akutsu N., Matsumoto H., Kamata T., Kitamura H. (1995) CO2 removal by hollow fiber gas liquid contactor, Energy Convers Manage 36, 415–418. [CrossRef] [Google Scholar]
  • Khaisri S., deMontigny D., Tontiwachwuthikul P., Jiraratananon R. (2010) Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor, Sep. Purifi. Technol. 65, 290–297. [CrossRef] [Google Scholar]
  • Keshavarz P., Ayatollahi S., Fathikalajahi J. (2008) Mathematical modeling of gas-liquid membrane contactors using random distribution of fibers, J. Membr. Sci. 325, 98–108. [CrossRef] [Google Scholar]
  • Happel J. (1959) Viscous flow relative to arrays of cylinders, AIChE J. 5, 174–177. [CrossRef] [Google Scholar]
  • Blauwhoff P.M.M., Versteeg G.F., van Swaaij W.P.M. (1982) A study on the reaction between CO2 and alkanolamines in aqueous solutions, Chem. Eng. Sci. 39, 2, 207–225. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.