Dossier: Geosciences Numerical Methods
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 515 - 528
DOI https://doi.org/10.2516/ogst/2013171
Publié en ligne 23 décembre 2013
  • Dean R.H., Schmidt J.H. (2009) Hydraulic-Fracture Predictions with a Fully Coupled Geomechanical Reservoir Simulator, SPE Journal 707–714. [CrossRef] [Google Scholar]
  • Chen H.Y., Teufel L.W., Lee R.L. (1995) Coupled Fluid Flow and Geomechanics in Reservoir Study – I. Theory and Governing Equations, SPE Annual Technical Conference & Exhibition, Dallas, Texas, Oct. [Google Scholar]
  • Morales F., Showalter R.E. (2010) The narrow fracture approximation by channeled flow, Journal of Mathematical Analysis and Applications 365, 1, 320–331. [Google Scholar]
  • Morales F., Showalter R.E. (2012) Interface approximation of Darcy flow in a narrow channel, Mathematical Methods in the Applied Sciences 35, 2, 182–195. [CrossRef] [MathSciNet] [Google Scholar]
  • Alboin C., Jaffré J., Roberts J.E., Serres C. (2002) Modeling fractures as interfaces for flow and transpot in porous media, Chen Z., Ewing R.E. (eds), Fluid flow and transport in porous media: mathematical and numerical treatment, Contemporary Mathematics 295, 13–24, American Mathematical Society. [CrossRef] [Google Scholar]
  • Martin V., Jaffré J., Roberts J.E. (2005) Modeling Fractures and Barriers as Interfaces for Flow in Porous Media, SIAM J. Sci. Comput. 26, 5, 1667–1691. [Google Scholar]
  • Biot M.A. (1941) General Theory of Three-Dimensional Consolidation, J. Appl. Phys. 12, 155–164. [CrossRef] [Google Scholar]
  • Coussy O. (1995) Mechanics of Porous Continua, Wiley, New York. [Google Scholar]
  • Kim J., Tchelepi H.A., Juanes R. (2011) Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and Geomechanics, SPE Journal 249–262, June. [CrossRef] [Google Scholar]
  • Mainguy M., Longuemare P. (2002) Coupling Fluid Flow and Rock Mechanics: Formulation of the Partial Coupling between Reservoir and Geomechanical Simulators, Oil & Gas Science and Technology 57, 4, 355–367. [Google Scholar]
  • Pan F. (2009) Development and Application of a Coupled Geomechanics Model for a Parallel Compositional Reservoir Simulator, PhD Thesis, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Settari A., Walters D.A. (1999) Advances in Coupled Geomechanics and Reservoir Modeling with Applications to Reservoir Compaction, SPE Reservoir Simulation Symposium, Houston, Texas, Feb. [Google Scholar]
  • Mikelić A., Wheeler M.F. (2013) Convergence of iterative coupling for coupled flow and geomechanics, Computational Geosciences 17, 3, 455–461. [Google Scholar]
  • Ingram R., Wheeler M.F., Yotov I. (2010) A multipoint flux mixed finite element method on hexahedra, SIAM J. Numer. Anal. 48, 1281–1312. [Google Scholar]
  • Wheeler M.F., Yotov I. (2006) A multipoint flux mixed finite element method, SIAM J. Numer. Anal. 44, 2082–2106. [Google Scholar]
  • Wheeler M.F., Xue G., Yotov I. (2011) Accurate Cell-Centered Discretizations for Modeling Multiphase Flow in Porous Media on General Hexahedral and Simplicial Grids, SPE Reservoir Simulation Symposium, The Woodlands, Texas, Feb. [Google Scholar]
  • Wheeler M.F., Xue G., Yotov I. (2012) Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity, Submitted, Aug. [Google Scholar]
  • Phillips P.J., Wheeler M.F. (2007) A Coupling of Mixed and Continuous Galerkin Finite Elements Methods for Poroelasticity I: The Continuous in Time Case, Computational Geosciences 11, 131–144. [Google Scholar]
  • Rungamornrat J., Wheeler M.F., Mear M.E. (2005) Coupling of Fracture/Non-Newtonian Flow for Simulating Nonplanar Evolution of Hydraulic Fractures, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Dallas, Texas, 9-12 Oct., SPE Paper 96968. [Google Scholar]
  • Ciarlet P.G. (1991) Basic error estimates for elliptic problems - Finite Element Methods, Part 1, Ciarlet P.G., Lions J.L. (eds), Handbook of Numerical Analysis. North-Holland, Amsterdam. [Google Scholar]
  • Girault V., Raviart P.A. (1986) Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin. [CrossRef] [Google Scholar]
  • Brezzi F., Fortin M. (1991) Mixed and hybrid finite element methods, Springer-Verlag, New York. [CrossRef] [Google Scholar]
  • Brezzi F., Douglas J. Jr, Marini L.D. (1985) Two families of mixed elements for second order elliptic problems, Numer. Math. 88, 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  • Brezzi F., Douglas J. Jr, Durán R., Fortin M. (1987) Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51, 237–250. [CrossRef] [MathSciNet] [Google Scholar]
  • Mikelić A., Bin Wang, Wheeler M.F. (2012) Numerical convergence study of iterative coupling for coupled flow and geomechanics, ECMOR XIII - 13th European Conference on the Mathematics of Oil Recovery, Biarritz, France, Sept. [Google Scholar]
  • Liu R. (2004) Discontinuous Galerkin for Mechanics, PhD Thesis, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Berndt M., Lipnikov K., Shashkov M., Wheeler M.F., Yotov I. (2005) Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals, SIAM Journal on Numerical Analysis 43, 4, 1728–1749. [CrossRef] [MathSciNet] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.