IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 457 - 466
DOI https://doi.org/10.2516/ogst/2014017
Publié en ligne 18 juillet 2014
  • Bernard G., Holm L.W. (1964) Effect of foam on permeability of porous media to gas, Old SPE Journal 4, 3, 267–274. [Google Scholar]
  • Holm L.W. (1968) The mechanism of gas and liquid flow through porous media in the presence of foam, Old SPE Journal 8, 4, 359–369. [Google Scholar]
  • Hanssen J.E., Holt T., Surguchev L.M. (1994) Foam Processes: An Assessment of Their Potential in North Sea Reservoirs Based on a Critical Evaluation of Current Field Experience SPE/DOE Improved Oil Recovery Symposium, 17–20 April, Tulsa, Oklahoma. [Google Scholar]
  • Schramm L.L. (1994) Foams: fundamentals and applications in the petroleum industry, American Chemical Society. [CrossRef] [Google Scholar]
  • Rossen W.R. (1996) Foams in enhanced oil recovery, Surfactant Science Series, 413–464. [Google Scholar]
  • Farajzadeh R., Andrianov A., Zitha P. (2010) Investigation of Immiscible and Miscible Foam for Enhancing Oil Recovery, Industrial & Engineering Chemistry Research 49, 4, 1910–1919. [CrossRef] [Google Scholar]
  • Hirasaki G., Miller C.A., Puerto M. (2011) Recent Advances in Surfactant EOR, SPE Journal 16, 4, 889–907. [CrossRef] [Google Scholar]
  • Farajzadeh R., Andrianov A., Krastev R., Hirasaki G., Rossen W. (2012) Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery, Advances in Colloid and Interface Science 183, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Haugen A., Ferno M., Graue A., Bertin H. (2012) Experimental Study of Foam Flow in Fractured Oil-Wet Limestone for Enhanced Oil Recovery, SPE Reservoir Evaluation & Engineering 15, 2, 218–228. [CrossRef] [Google Scholar]
  • Singh G., Hirasaki G.J., Miller C.A. (1997) Dynamics of foam films in constricted pores, AICHE Journal 43, 12, 3241–3252. [CrossRef] [Google Scholar]
  • Marmottant P., Raven J.P. (2009) Microfluidics with foams, Soft Matter 5, 18, 3385–3388. [CrossRef] [Google Scholar]
  • Marchalot J., Lambert J., Cantat I., Tabeling P., Jullien M.C. (2008) 2D foam coarsening in a microfluidic system, EPL 83, 64006. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Ma K., Liontas R., Conn C.A., Hirasaki G.J., Biswal S.L. (2012) Visualization of improved sweep with foam in heterogeneousporous media using microfluidics, Soft Matter 8, 41, 10669–10675. [CrossRef] [Google Scholar]
  • Duffy D.C., McDonald J.C., Schueller O.J.A., Whitesides G.M. (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry 70, 23, 4974–4984. [Google Scholar]
  • Ginn B.T., Steinbock O. (2003) Polymer surface modification using microwave-oven-generated plasma, Langmuir 19, 19, 8117–8118. [CrossRef] [Google Scholar]
  • Raven J.P., Marmottant P., Graner F. (2006) Dry microfoams: formation and flow in a confined channel, Eur. Phys. J. 51, 137–143. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lide D. (2011) CRC Handbook of Chemistry and Physics, CRC Press. [Google Scholar]
  • Garstecki P., Fuerstman M.J., Stone H.A., Whitesides G.M. (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up, Lab on A Chip 6, 3, 437–446. [Google Scholar]
  • Fu T., Funfschilling D., Ma Y., Li H. (2009) Scaling of formation of slug bubbles in microfluidic flow-focusing devices, Microfluid Nanofluid 8, 467–475. [CrossRef] [Google Scholar]
  • Stoffel M., Wahl S., Lorenceau E., Höhler R., Mercier B., Angelescu D.E. (2012) Bubble Production Mechanism in a Microfluidic Foam Generator, Phys. Rev. Lett. 108, 198302. [CrossRef] [PubMed] [Google Scholar]
  • Mason T.G., Wilking J.N., Meleson K., Chang C.B., Graves S.M. (2006) Nanoemulsions: formation, structure, and physical properties, Journal of Physics-Condensed Matter 18, 41, R635–R666. [Google Scholar]
  • Protière S., Bazant M.Z., Weitz D., Stone H.A. (2010) Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations, EPL 92, 54002. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Kim J.-U., Park B.H., Lee M.-H. (2013) Critical Parameters to Determine Mean Bubble Size of Generated Foams from a Foam Generator, J. Appl. Polym. Sci. 130, 3, 2062–2067. [CrossRef] [Google Scholar]
  • Fried A.N. (1961) The foam-drive process for increasing the recovery of oil, Report of US Bureau of Mines, BM-RI-5866 [Google Scholar]
  • Kovscek A.R., Bertin H.J. (2003) Foam mobility in heterogeneous porous media (I:Scaling concepts), Transport in Porous Media 57, 17–35. [CrossRef] [Google Scholar]
  • Kovscek A.R., Bertin H.J. (2003) Foam mobility in heterogeneous porous media (I: Experimental observations), Transport in Porous Media 57, 37–49. [CrossRef] [Google Scholar]
  • Prat L., Sarrazin F., Tasseli J., Marty A. (2006) Increasing and decreasing droplets velocity in microchannels, Microfluidics and Nanofluidics 2, 3, 271–274. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.