IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 445 - 456
DOI https://doi.org/10.2516/ogst/2013138
Publié en ligne 17 décembre 2013
  • De Micco V., Buonomo R., Paradiso R., De Pascale S., Aronne G. (2012) Soybean cultivar selection for Bioregenerative Life Support Systems (BLSS) – Theoretical selection, Adv. Space Res. 49, 10, 1415–1421, DOI:10.1016/j.asr.2012.02.022. [CrossRef] [Google Scholar]
  • Zimmerman R. (2003) Growing pains, Air Space Magazine, Sept., pp. 31–35. [Google Scholar]
  • Perchonok M., Bourland C. (2002) NASA food systems: past, present, and future, Nutrition 18, 913–920. [CrossRef] [PubMed] [Google Scholar]
  • Salisbury F.B., Gitelson J.I., Lisovsky G.M. (1997) Bios-3: Siberian experiments in bioregenerative life support, Bioscience 47, 575–585. [CrossRef] [PubMed] [Google Scholar]
  • Wolverton B.C. (1980) Higher Plants for Recycling Human Waste into Food, Potable Water and Revitalized Air in a Closed Life Support System, Earth Resources Laboratory, National Aeronautics and Space Administration, NASA-TM-87550. [Google Scholar]
  • Wignarajah K., Pisharody S., Fisher J.W. (2000) Can incineration technology convert CELSS wastes to resources for crop production? A working hypothesis and some preliminary findings, Adv. Space Res. 26, 327–333. [CrossRef] [PubMed] [Google Scholar]
  • Zolotukhin I.G., Tikhomirov A.A., Kudenko Y.A., Gribovskaya I.V. (2005) Biological and physicochemical methods for utilization of plant wastes and human exometabolites for increasing internal cycling and closure of life support systems, Adv. Space Res. 35, 1559–1562. [CrossRef] [PubMed] [Google Scholar]
  • Gros J.B., Poughon L., Lasseur C., Tikhomirov A.A. (2003) Recycling efficiencies of C,H,O,N,S, and P elements in a biological life support system based on micro-organisms and higher plants, Adv. Space Res. 31, 195–199. [CrossRef] [PubMed] [Google Scholar]
  • Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R. (1988) MELISSA – a microorganisms based model for CELSS development, 3rd symposium on space thermal control & life support system, Noordwijk, The Netherlands, 3-6 Oct. [Google Scholar]
  • Yabuki K., Miyagawa H. (1970) Studies on the effect of wind speed on photosynthesis, Jpn. J. Agric. Meteorol. 26, 137–142. (in Japanese with English summary). [CrossRef] [Google Scholar]
  • Monteith J.L., Unsworth M.H. (1990) Principles of Environmental Physics, Edward and Arnold Publishing Co, London, p. 291. [Google Scholar]
  • Kitaya Y., Shibuya T., Yoshida, Kiyota M. (2004) Effects of air velocity on photosynthesis of plant canopies under elevated CO2 levels in a plant culture system, Adv. Space Res. 34, 7, 1466–1469. [CrossRef] [PubMed] [Google Scholar]
  • Tiwari A., Fontaine J.P. (2009) Towards the prediction of heat & mass transfer in an air-conditioned environment for a life support system in space, Water Air Soil Poll. Focus 9, 5-6, 539–547. [CrossRef] [Google Scholar]
  • Tiwari A., Lafon P., Kondjoyan A., Fontaine J.P. (2010) Experimental modelling for the prediction of heat and mass transfer in an air-conditioned space environment for life support systems, 40th ICES-2010, Barcelona, Spain, AIAA2010-6171 [Google Scholar]
  • Tiwari A., Lafon A., Kondjoyan A., Fontaine J.P. (2011) An air-conditioned wind tunnel environment for the study of mass and heat flux due to condensation of humid air, Chapter 4, Wind Tunnels: Aerodynamics, Models and Experiments, Pereira J.D. (ed.), Nova Science Publishers, Inc., New York, USA, ISBN: 978-1-61209-1. [Google Scholar]
  • Tiwari A. (2011) Characterisation of mass transfer by condensation of humid air on a horizontal plate, PhD Thesis, Blaise Pascal University, Clermont-Ferrand, France. [Google Scholar]
  • Beysens D. (2006) Dew nucleation and growth, C. R. Physique 7, 1082–1100. [Google Scholar]
  • Incropera F.P., DeWitt D.P. (1990) Fundamentals of Heat and Mass Transfer, 3rd edn., John Wiley & Sons, Inc., New York. [Google Scholar]
  • Minkowycz W.J., Sparrow E.M. (1996) Condensation heat transfer in the presence of noncondensables, interfacial resistance, variable properties and diffusion, Int. J Heat Mass Trans. 9, 1125–1144. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.