IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 457 - 466
DOI https://doi.org/10.2516/ogst/2014017
Published online 18 July 2014
  • Bernard G., Holm L.W. (1964) Effect of foam on permeability of porous media to gas, Old SPE Journal 4, 3, 267–274. [Google Scholar]
  • Holm L.W. (1968) The mechanism of gas and liquid flow through porous media in the presence of foam, Old SPE Journal 8, 4, 359–369. [Google Scholar]
  • Hanssen J.E., Holt T., Surguchev L.M. (1994) Foam Processes: An Assessment of Their Potential in North Sea Reservoirs Based on a Critical Evaluation of Current Field Experience SPE/DOE Improved Oil Recovery Symposium, 17–20 April, Tulsa, Oklahoma. [Google Scholar]
  • Schramm L.L. (1994) Foams: fundamentals and applications in the petroleum industry, American Chemical Society. [CrossRef] [Google Scholar]
  • Rossen W.R. (1996) Foams in enhanced oil recovery, Surfactant Science Series, 413–464. [Google Scholar]
  • Farajzadeh R., Andrianov A., Zitha P. (2010) Investigation of Immiscible and Miscible Foam for Enhancing Oil Recovery, Industrial & Engineering Chemistry Research 49, 4, 1910–1919. [CrossRef] [Google Scholar]
  • Hirasaki G., Miller C.A., Puerto M. (2011) Recent Advances in Surfactant EOR, SPE Journal 16, 4, 889–907. [CrossRef] [Google Scholar]
  • Farajzadeh R., Andrianov A., Krastev R., Hirasaki G., Rossen W. (2012) Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery, Advances in Colloid and Interface Science 183, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Haugen A., Ferno M., Graue A., Bertin H. (2012) Experimental Study of Foam Flow in Fractured Oil-Wet Limestone for Enhanced Oil Recovery, SPE Reservoir Evaluation & Engineering 15, 2, 218–228. [CrossRef] [Google Scholar]
  • Singh G., Hirasaki G.J., Miller C.A. (1997) Dynamics of foam films in constricted pores, AICHE Journal 43, 12, 3241–3252. [CrossRef] [Google Scholar]
  • Marmottant P., Raven J.P. (2009) Microfluidics with foams, Soft Matter 5, 18, 3385–3388. [CrossRef] [Google Scholar]
  • Marchalot J., Lambert J., Cantat I., Tabeling P., Jullien M.C. (2008) 2D foam coarsening in a microfluidic system, EPL 83, 64006. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Ma K., Liontas R., Conn C.A., Hirasaki G.J., Biswal S.L. (2012) Visualization of improved sweep with foam in heterogeneousporous media using microfluidics, Soft Matter 8, 41, 10669–10675. [CrossRef] [Google Scholar]
  • Duffy D.C., McDonald J.C., Schueller O.J.A., Whitesides G.M. (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry 70, 23, 4974–4984. [Google Scholar]
  • Ginn B.T., Steinbock O. (2003) Polymer surface modification using microwave-oven-generated plasma, Langmuir 19, 19, 8117–8118. [CrossRef] [Google Scholar]
  • Raven J.P., Marmottant P., Graner F. (2006) Dry microfoams: formation and flow in a confined channel, Eur. Phys. J. 51, 137–143. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lide D. (2011) CRC Handbook of Chemistry and Physics, CRC Press. [Google Scholar]
  • Garstecki P., Fuerstman M.J., Stone H.A., Whitesides G.M. (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up, Lab on A Chip 6, 3, 437–446. [Google Scholar]
  • Fu T., Funfschilling D., Ma Y., Li H. (2009) Scaling of formation of slug bubbles in microfluidic flow-focusing devices, Microfluid Nanofluid 8, 467–475. [CrossRef] [Google Scholar]
  • Stoffel M., Wahl S., Lorenceau E., Höhler R., Mercier B., Angelescu D.E. (2012) Bubble Production Mechanism in a Microfluidic Foam Generator, Phys. Rev. Lett. 108, 198302. [CrossRef] [PubMed] [Google Scholar]
  • Mason T.G., Wilking J.N., Meleson K., Chang C.B., Graves S.M. (2006) Nanoemulsions: formation, structure, and physical properties, Journal of Physics-Condensed Matter 18, 41, R635–R666. [Google Scholar]
  • Protière S., Bazant M.Z., Weitz D., Stone H.A. (2010) Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations, EPL 92, 54002. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Kim J.-U., Park B.H., Lee M.-H. (2013) Critical Parameters to Determine Mean Bubble Size of Generated Foams from a Foam Generator, J. Appl. Polym. Sci. 130, 3, 2062–2067. [CrossRef] [Google Scholar]
  • Fried A.N. (1961) The foam-drive process for increasing the recovery of oil, Report of US Bureau of Mines, BM-RI-5866 [Google Scholar]
  • Kovscek A.R., Bertin H.J. (2003) Foam mobility in heterogeneous porous media (I:Scaling concepts), Transport in Porous Media 57, 17–35. [CrossRef] [Google Scholar]
  • Kovscek A.R., Bertin H.J. (2003) Foam mobility in heterogeneous porous media (I: Experimental observations), Transport in Porous Media 57, 37–49. [CrossRef] [Google Scholar]
  • Prat L., Sarrazin F., Tasseli J., Marty A. (2006) Increasing and decreasing droplets velocity in microchannels, Microfluidics and Nanofluidics 2, 3, 271–274. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.