IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 141 - 154
DOI https://doi.org/10.2516/ogst/2013140
Publié en ligne 15 novembre 2013
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 2, 3059-3066. [CrossRef] [MathSciNet] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 1525-1541. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Thobois L., Dugue V., Poinsot T. (2011) Large Eddy Simulation of a motored single-cylinder piston engine: numerical strategies and validation, Flow Turbul. Combust. 86, 2, 153-177. [CrossRef] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 1562-1575. [CrossRef] [Google Scholar]
  • Lecocq G., Richard S., Michel J.-B., Vervisch L. (2011) A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre- ignition in piston engines, Proc. Combust. Inst. 33, 6, 1215-1226. [CrossRef] [Google Scholar]
  • Martinez L., Benkenida A., Cuenot B. (2007) Towards Large Eddy Simulation of Diesel Fuel Spray Using an Eulerian-Eulerian Approach, ILASS-Europe. [Google Scholar]
  • Vuorinen V., Hillamo H., Nuutinen M., Kaario O., Larmi M., Fuchs L. (2011) Effect of Droplet Size and Atomization on Spray Shape: A Priori Study Using Large-Eddy Simulation, Flow Turb. Combust. 86, 533-561. [CrossRef] [Google Scholar]
  • Vuorinen V., Hillamo H., Nuutinen M., Kaario O., Larmi M., Fuchs L. (2010) Large-Eddy Simulation of Droplet Stokes Number Effects on Turbulent Spray Shape, Atomization Sprays, 20, 93-114. [CrossRef] [Google Scholar]
  • Hori T., Senda J., Kuge T., Gen Fujimoto H. (2006) Large Eddy Simulation of Non-Evaporative and Evaporative Diesel Spray in Constant Volume Vessel by Use of KIVALES, SAE Paper 2006-01-3334. [Google Scholar]
  • Fujimoto H., Hori T., Senda J. (2009) Effect of Breakup Model on Diesel Spray Structure Simulated by Large Eddy Simulation, SAE Paper 2009-24-0024. [Google Scholar]
  • Vuorinen V., Larmi M. (2008) Large-Eddy Simulation on the Effect of Droplet Size Distribution on Mixing of Passive Scalar in a Spray, SAE Paper 2008-01-0933. [Google Scholar]
  • Simonin O. (1996) Combustion and turbulence in two phase flows. Lecture series 1996-02, Von Karman Institute of Fluid Dynamics. [Google Scholar]
  • Fevrier P., Simonin O., Squires K.D. (2005) Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study, J. Fluid Mech. 533, 1-46. [CrossRef] [Google Scholar]
  • Martinez L., Vié A., Jay S., Benkenida A., Cuenot B. (2009) Large Eddy Simulation of Fuel sprays using the Eulerian Mesoscopic Approach. Validations in realistic engine conditions, 11th ICLASS International Conference on Liquid Atomization and Sprays Systems, Vail, Colorado, USA. [Google Scholar]
  • Martinez L., Benkenida A., Cuenot B. (2010) A model for the injection boundary conditions in the context of 3D simulation of Diesel Spray: Methodology and validation, Fuel 89, 1, 219-228. [CrossRef] [Google Scholar]
  • Bruneaux G., Maligne D. (2009) Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel injections, SAE Paper 2009-01-1352. [Google Scholar]
  • Kraichan R. (1970) Diffusion by a Random Velocity Field, Phys. Fluids 13, 22-31. [CrossRef] [Google Scholar]
  • Smirnov A., Shi S., Celik I. (2000) Random Flow Simulations with bubble dynamics model, Proceedings of FEDSMOO, ASME 2000 Fluids Engineering Division Summer Meeting, Vol. FEDSM2000-11215, Boston, Massachusetts, USA. [Google Scholar]
  • Klein M., Sadiki A., Janicka J. (2003) A digital filter-based generation of inflow data for spatially developing numerical simulation or large eddy simulation, J. Comput. Phys. 186, 652-665. [CrossRef] [Google Scholar]
  • Hussein H., Capp S., Georges W. (1994) velocity measurements in a high-reynolds-number-momentum-conservative, axisymmetric turbulent jet, J. Fluid Mech. 258, 31-75. [CrossRef] [Google Scholar]
  • Chaves H., Kirmse C., Obermeier F. (2004) Velocity measurements of dense Diesel fuel sprays in dense airization, Atomization Sprays 14, 589-609. [CrossRef] [Google Scholar]
  • Moureau V., Lartigue G., Sommerer Y., Angelberger C., Colin O., Poinsot T. (2005) Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys. 2020, 2, 710-736. [CrossRef] [Google Scholar]
  • Pope S.B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6, 35. [NASA ADS] [CrossRef] [Google Scholar]
  • Musculus M., Picket 1. (2009) Entrainment waves in Diesel jets, SAE Paper 2009-01-1335. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.