IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 155 - 165
DOI https://doi.org/10.2516/ogst/2013139
Publié en ligne 5 novembre 2013
  • Idicheria C., Pickett L. (2007) Eeffect of EGR on Diesel premixed burn equivalence ratios, Proceedings of the Combustion Institute 31, 2931-2938. [CrossRef] [Google Scholar]
  • Siebers D., Higgins B. (2001) Flame lift-off on direct- injection diesel sprays under quiescent conditions, SAE Paper 2001-01-0530. [Google Scholar]
  • Novella R., Garcia A., Pastor J.M., Domenech V. (2010) The role of detailed chemical kinetics on CFD Diesel spray ignition and combustion modelling, Math. Comput. Model. 54, 1706-1719. [CrossRef] [Google Scholar]
  • Venugopal R., Abraham J. (2007) A numerical investigation of flame lift-off in Diesel jets, Combust. Sci. Technol. 179, 12, 2599-2618. [CrossRef] [Google Scholar]
  • Gopalakrishnan V., Abrahams J. (2002) An investigation of ignition behaviour in Diesel sprays, Proceedings of the Combustion Institute 29, 641-646. [CrossRef] [Google Scholar]
  • Pitsch H., Barths H., Peters N. (1996) Three-dimensional modeling of NO, and soot formation in DI-Diesel engines using detailed chemistry based on the interactive flamelet approach, SAE Paper 962057. [Google Scholar]
  • Tap F., Veynante D. (2004) Simulation of flame lift-off on a Diesel jet using a generalized flame surface density modelling approach, Proc. Combust. Inst. 30, 919-926. [CrossRef] [Google Scholar]
  • Azimov U., Kim K.S., Bae C. (2010) Modeling of flame liftoff length in Diesel low-temperature combustion with multidimensional CFD based on the flame surface density and extinction concepts, Combust. Theory Model. 14, 155-175. [CrossRef] [Google Scholar]
  • Colin 0., Benkenida A. (2004) The 3-Zones Extended Coherent Flame Model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. 59, 6, 593-609. [Google Scholar]
  • Hu B., Rutland C., Shethaji T.A. (2008) Combustion Modeling of Conventionnal Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulation, SAE Paper 2008-01-0958. [Google Scholar]
  • Seo J., Lee D., Huh K.Y., Chung J. (2010) Combustion Simulation of a Diesel Engine in the pHCCI Mode with Split Injections by the Spatially Integrated CMC Model, Combust. Sci. Technol. 182, 9, 1241-1260. [CrossRef] [Google Scholar]
  • Bekdemir C., Somers L.M.T., de Goey L.P.H., Tillou J., Angelberger C. (2013) Predicting Diesel combustion characteristics with Large-Eddy Simulations including tabulated chemical kinetics, Proceedings of the Combustion Institute, 34, 2, 3067-3074. [Google Scholar]
  • Bekdemir C., Rijk E., Somers L., de Goey L., Albrecht B. (2010) On the application of the flamelet generated manifold (FGM) approach to the simulation of an igniting Diesel spray, SAE Paper 2010-01-0358. [Google Scholar]
  • Michel J.-B., Colin 0., Veynante D. (2008) Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combust. Flame. 152, 80-99. [CrossRef] [Google Scholar]
  • Michel J.-B., Colin 0., Angelberger C., Veynante D. (2009) Using the tabulated diffusion flamelet model ADF-PCM for simulating a lifted methane-air jet flame, Combust. Flame. 156, 1318-1331. [CrossRef] [Google Scholar]
  • Michel J.-B., Colin O., Veynante D. (2009) Comparison of differing formulations of the PCM model by their application to the simulation of an auto-igniting H2/air jets, Flow Turbul. Combust. 83, 33-60. [CrossRef] [Google Scholar]
  • Sandia national laboratories, Engine Combustion Network (ECN), URL http://www.sandia.gov/ecn. [Google Scholar]
  • Pickett L., Siebers D., Idicheria C. (2005) Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets, SAE Paper 2005-01-3843. [Google Scholar]
  • Siebers D., Higgins B., Pickett L. (2002) Flame Lift-Off on Direct-Injection Diesel Fuel Jets: Oxygen Concentration Effects, SAE Paper 2002-01-0890. [Google Scholar]
  • Moureau V., Lartigue G., Sommerer Y., Angelberger C., Colin O., Poinsot T. (2005) High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys. 202, 2, 710-736. [CrossRef] [Google Scholar]
  • Peters N. (1985) Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames, in Larrouturou B., Glowinsky R., Temam R. (eds), Numerical simulation of combustion phenomena, Volume 241, pp. 90-109, Springer-Verlag, Berlin. [Google Scholar]
  • Fiorina B., Baron R., Gicquel O., Thevenin D., Carpentier S., Darabiha N. (2003) Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combust. Theory Model. 7, 449-470. [Google Scholar]
  • Peters N. (2000) Turbulent combustion, Cambridge University Press. [Google Scholar]
  • Seiser R., Pitsch H., Seshadri K., Pitz W.J., Curran H.J. (2000) Extinction and autoignition of n-heptane in counterflow configuration, Symposium (International) on Combustion 28, 2029-2037. [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations. I: The basic experiment, Monthly Weather Rev. 91, 3, 99-164. [Google Scholar]
  • Spalding D.B. (1953) The combustion of liquid fuels, Proc. Combust. Inst. 11, 847-863. [Google Scholar]
  • Pera C., Réveillon J., Vervisch L., Domingo P. (2006) Modeling subgris scale mixture fraction variance in les of evaporating spray, Combust. Flame 146, 635-648. [CrossRef] [Google Scholar]
  • Pierce C.D., Moin P. (1998) A dynamic model for subgrid scale variance and dissipation rate of a conserved scalar, Phys. Fluids 10, 12, 3041-3044. [CrossRef] [MathSciNet] [Google Scholar]
  • Jay S., Colin C. (2011) A variable volume approach of tabulated detailed chemistry and its applications to multidimensional engine simulations, Proceedings of the Combustion Institute 33, 3065-3072. [CrossRef] [Google Scholar]
  • Idicheria C., Pickett L. (2007) Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging, SAE Paper 2007-01-0647. [Google Scholar]
  • Lax P.D., Wendroff B. (1960) Systems of conservation laws, Commun. Pure Appl. Math. 13, 217-237. [CrossRef] [Google Scholar]
  • Fevrier P., Simonin O., Squires K. (2005) Partitioning of Particle Velocities in Gas-Solid Turbulent Flows into a Continuous Field and a Spatially Uncorrelated Random Distribution: Theoretical Formalism and Numerical Study, J. Fluid Mech. 533, 1-46. [CrossRef] [Google Scholar]
  • Martinez L., Benkenida A., Cuenot B. (2010) A model for the injection boundary conditions in the context of 3D Simulation of Diesel Spray: Methodology and Validation, Fuel 89, 1, 219-228. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.