- Sikes K., Van Walwijk M., McGill R. (2011) Algal fuel industry overview and Feasibility assessment, in Algae as a feedstock for biofuels: an assessment of the state of technology and opportunities, IEA Advanced Motor Fuels Implementing Agreement. [Google Scholar]
- Davis R., Aden A., Pienkos P.T. (2011) Techno-economic analysis of autotrophic microalgae for fuel production, Applied Energy 88, 3524-3531. [CrossRef] [Google Scholar]
- Richardson J.W., Johnson M.D., Outlaw J.L. (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest, Algal Research 1, 93-100. [CrossRef] [Google Scholar]
- Slome S. (2012) in Algae Technology, White Plains: Nexant, New York. [Google Scholar]
- Sudeep V. (2010) in Biofuels from algae, SRI Consulting, Menlo Park, California. [Google Scholar]
- Chisti Y. (2007) Biodiesel from microalgae, Biotechnology Advances 25, 294-306. [CrossRef] [PubMed] [Google Scholar]
- Collet P. (2012) Analyse de Cycle de Vie de la valorisation énergétique de la biomasse algale : prise en compte des aspects dynamiques dans l’étape d’inventaire, Thesis, École Nationale Supérieure Agronomique de Montpellier, Pôle ELSA, Chapitre 2 : Revue bibliographique microalgues et ACV, pp. 21-65. [Google Scholar]
- Patil V., Tran K.Q., Giselrod H.R. (2008) Towards Sustainable Production of Biofuels from Microalgae, Int J Mol Sci., 9, 1188-1195. DOI: 10.3390/ijms9071188. [Google Scholar]
- Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., Bernard, O. (2009) Life cycle assessment of biodiesel production from microalgae, Environmental Science Technology 43, (17), 6475-6481. [Google Scholar]
- Khoo H.H., Sharratt P.N., Das P., Balasubramanian R.K., Naraharisetti P.K., Shaik S. (2011) Life cycle energy and CO2 analysis of microalgae to biodiesel: preliminary results and comparisons, Bioresource Technology 102, 5800-5807. [CrossRef] [PubMed] [Google Scholar]
- Razon L.F., Tan R.R. (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis, Applied Energy 88, 3507-3514. [CrossRef] [Google Scholar]
- Benemann J., Woertz I., Lundquis T. (2012) Life Cycle Assessment for Microalgae Oil Production, Disruptive Science and Technology 1, 68-78. DOI: 10.1089/dst.2012.0013. [CrossRef] [Google Scholar]
- Campbell P.K., Beer T., Batten D. (2011) Life cycle assessment in biodiesel production from microalgae in ponds, Bioresource Technology 102, 50-56. [Google Scholar]
- Clarens, A.F., Resurrecccion, E.P., White, M.A., Colosi, L. M. (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks, Environmental Science Technology 44(5), 1813-1819. [Google Scholar]
- Sander K., Murthy G. (2010) Life cycle analysis of algae biodiesel, International Journal Life Cycle Assessment 15, 704-714. [Google Scholar]
- Vera-Morales M, Schafer A. (2009) Fuel-cycle assessment of alternative aviation fuels, University of Cambridge, OMEGA Office, 28 Avril. [Google Scholar]
- Stratton R.W., Wong Hsin Min, Hileman J.I. (2010) (MIT) Life cycle greenhouse gas emissions from alternative jet fuels, PARTNER Project 28 report version 1.1, 04/2010. [Google Scholar]
- US Environmental Protection Agency (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, EPA, Washington, DC. [Google Scholar]
- Collet P., Hélias A., Lardon L., Ras M., Goy R.-A., Steyer J.-P. (2011) Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology 102, 207-214. [CrossRef] [PubMed] [Google Scholar]
- Seaweed as biofuel? Metabolic engineering makes it a viable option (Published: Wednesday, December 15, 2010 - 17:33 in Biology & Nature), from website: http://esciencenews.com/articles/2010/12/15/seaweed.biofuel.metabolic.engineering.makes.it.a.viable.option accessed 16/11/2012. [Google Scholar]
- Perez R., Kaas R., Campello F, Arbault S., Barbaroux O. (1992) La culture des algues marines dans le monde, http:// archimer.ifremer.fr/doc/1992/rapport-4402.pdf. [Google Scholar]
- FAO 2010 Statistics (2008 data) from IFREMER website: http://aquaculture.ifremer.fr/statistiques_mondiales/ presentation_generale/production_aquacole. [Google Scholar]
- Kimon T. Bird (1984) An historical perspective on economics and system costs of kelp cultivation for bioconversion to methane, Algal Biomass Technologies: Proceedings of a workshop on the present status and future directions for biotechnologies based on algal biomass production, University of Colorado, Algal Biomass Technologies. [Google Scholar]
- Roesijadi G., Copping A.E., Huesemann M.H., Forster J., Benemann J.R. (2008) Techno-Economic Feasibility Analysis of Offshore Seaweed Farming for Bioenergy and Biobased Products, Battelle Pacific Northwest Division Report Number PNWD-3931. [Google Scholar]
- Website: http://www.affmar.gouv.nc/portal/page/portal/affmar/missions/presentation, accessed 16/11/2012. [Google Scholar]
- SupAgro Montpellier: International Centre for Higher Education in Agricultural Sciences: http://www.supagro.fr/web/pages/?id1=20&page=455. [Google Scholar]
- Website: http://investissement-avenir.gouvernement.fr/, accessed 16/11/2012. [Google Scholar]
- Website Biofuels Digest: http://biofuelsdigest.com/bdigest/2010/06/23/with-a-little-kelp-from-my-friends-macroalgaeprojects-concepts-bloom, accessed 16/11/2012. [Google Scholar]
- Platt T., Subba Rao D.V. (1975) Cooper J.P. (ed), Primary production of marine macrophytes, Photosynthesis and productivity in different environments, Cambridge, pp. 249-280. [Google Scholar]
- Charpy-Roubaud C., Sournia A. (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans, Marine Microbial Food Webs 4, 31-57. [Google Scholar]
- Huber G., Iborra S., Corma A. (2006) Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev. 106, 4044-4098. [CrossRef] [PubMed] [Google Scholar]
- Huber G.W. (2008) Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries, University of Massachusetts, Amherst, National Science Foundation, Washington DC, pp. 66-88 (accessed November 2010) http://www.ecs. umass.edu/biofuels/Images/Roadmap2-08.pdf. [Google Scholar]
- Chheda J.N., Dumesic J.A. (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates, Catalysis Today 123, 59-70. [CrossRef] [Google Scholar]
- Website: http://www.virent.com/wordpress/wp-content/uploads/2011/12/Virent-Fact-Sheet-2012.pdf accessed 08/11/2012. [Google Scholar]
- Website: http://www.agprofessional.com/news/First-isobutanol-shipped-from-Luverne-Minn-165338596.html?ref=596 accessed 08/11/2012. [Google Scholar]
- Hayashi N., Sugiyam J., Okano T., Ishihara M. (1998) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type, Carbohydrate Research 305, 261-269. [CrossRef] [Google Scholar]
- Kuhad, R.C., Gupta, R., Khasa, Y.P., Singh, A., Zhang, Y.-H.P. (2011) Bioethanol production from pentose sugars: Current status and future prospects, Renewable Sustainable Energy Reviews 15, (9), 4950-4962. [CrossRef] [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
|
|
---|---|---|
Page(s) | 875 - 898 | |
DOI | https://doi.org/10.2516/ogst/2013164 | |
Publié en ligne | 31 octobre 2013 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.