Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 899 - 911
DOI https://doi.org/10.2516/ogst/2013148
Publié en ligne 24 septembre 2013
  • IATA Economics 2009. [Google Scholar]
  • Aviation civile magasine n° 355, décembre 2010. [Google Scholar]
  • www.swafea.eu (Sustainable Way for Alternative Fuels and Energy in Aviation State of the Art on Alternative Fuels in Aviation Executive Summary). [Google Scholar]
  • Baumer K.A., Herzog T., Pershing J., World Resources Institute, Navigating the numbers, Greenhouse Gas Data and international Climate Policy, http://pdf.wri.org/navigating_numbers.pdf. [Google Scholar]
  • http://www.bp.com, Statistical review of world energy full report 2012. [Google Scholar]
  • Airbus, European Advanced Biofuels Flightpath Initiative. [Google Scholar]
  • International ASTM, Annual Book of ASTM Standards, 2009. [Google Scholar]
  • Exxonmobil Aviation, World Jet Fuel Specifications, 2005 Edition, http://www.exxonmobil.com. [Google Scholar]
  • Sasol’s Secunda CTL plant: costly to build, but now it’s a cash cow", Gas-to-Liquids News, 2005-11-01. [Google Scholar]
  • ASTM website : http://www.astm.org/SNEWS/SO_2011/enright_soll.html [Google Scholar]
  • Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M. (2009), Biodiesel production from oleaginous microorganisms, Renewable Energy 34, 1, 1-5. [CrossRef] [Google Scholar]
  • Xu H., Miao X., Wu Q. (2006) High quality biodiesel production from a microalga Chlorellaprotothecoides by heterotrophic growth in fermenters, J. Biotechnol. 4, 126, 499-507. [Google Scholar]
  • Sheehan J., Dunahay T., Benemann J., Roessler P. (1998) Technical report, A look back at the U.S. Department of Energy’s aquatic species program—biodiesel from algae, National Renewable Energy Lab, U.S. Department of Energy’s Office of Fuels Development, www.osti.gov. [Google Scholar]
  • Boulton C.A., Ratledge C. (1984) The physiology of hydrocarbon utilizing microorganisms, Topics Fermentation Enzyme Technol. 9, 11-77. [Google Scholar]
  • Metting F.B. (1996) Biodiversity and application of micro- algae, J. Ind. Microbiol. 17, 5-6, 477-489. [CrossRef] [Google Scholar]
  • Ratledge C. (1982) Single Cell Oil, Enzyme Microb. Technol. 4, 1, 58-60. [CrossRef] [Google Scholar]
  • Granger L.M. (1992) Caractérisation cinétique et stoechiométrique de la synthèse d’acides gras chez Rhodotorula glutinis, PHD Thesis/ Thèse, Toulouse, INSA Toulouse. [Google Scholar]
  • Davies R.J., Holdsworth J.E., Reader S.L. (1990) The effect of low oxygen-uptake rate on the fatty-acid profile of the oleaginous yeast Apiotrichum-Curvatum, Appl. Microbiol. Biotechnol. 33, 5, 569-573. [Google Scholar]
  • Kim J.-H., Block D.E., Mills D.A. (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass, Appl. Microbiol. Biotechnol. 88, 5, 1077-1085. [CrossRef] [PubMed] [Google Scholar]
  • Salusjärvi L., Kankainen M., Soliymani R, Pitkknen J.-P., Penttild M., Ruohonen L. (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae, Microbial Cell Factories 7, 18. [CrossRef] [Google Scholar]
  • Freer S.N., Skory C.D., Bothast R.J. (1997) D-Xylose metabolism in Rhodosporidium toruloides, Biotechnol. Lett. 19, 11, 1119-1122. [CrossRef] [Google Scholar]
  • Suomalainen I., Londesborough J., Korhola M. (1989) An Oxidoreductive Pathway for D-Xylose Assimilation by Rhodosporidium toruloides, J. General Microbiology 135, 6, 1537-1545. [Google Scholar]
  • Li Q., Liang L., Xue F., Zhang X., Tan T. (2010) The Utilization of Xylose by Oleaginous Yeast Rhodotorula glu tinis, J. Biobased Mater. Bioenergy 4, 1, 53-57. [CrossRef] [Google Scholar]
  • Wise S.A., Poster D.L., Kucklich J.R., Keller J.M., Vanderpol S.S., Schantz M.M. (2006) Standard reference materials (SRMs) for determination of organic contaminants in environmental samples, Anal. Bioanalytical Chem. 386, 4, 1043. [CrossRef] [Google Scholar]
  • Dron J., Linke R., Rosenberg E., Schreiner M. (2004) Trimethylsulfonium hydroxide as derivatization reagent for the chemical investigation of drying oils in work of art by gas chromatography, J. Chromatography A 1047, 1, 111-116. [CrossRef] [Google Scholar]
  • Ratledge C. (1988) Microbial Lipids, Harcourt Brace Jovanovich, London. [Google Scholar]
  • Kerstetter J.D., Lyons J.K. (2001) Wheat Straw for Ethanol Production in Washington: A Resource, Technical, and Economic Assessment, Washington State University, Cooperative Extension Energy Program, Washington. [Google Scholar]
  • Nigam J.N. (1998) Single cell protein from pineapple cannery effluent, World J. Microbiol. Biotechnol. 14, 693-696. [CrossRef] [Google Scholar]
  • Kane S.M., Roth R. (1974) Carbohydrate metabolism during ascospore development in yeast, J. Bacteriology 118, 1, 8-14. [Google Scholar]
  • Grotkjœr T., Christakopoulos P., Nielsen J., Olsson L. (2005) Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains, Metabolic Eng. 7, 5-6, 437-444. [CrossRef] [Google Scholar]
  • François J., Parrou J.L. (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev. 25, 1, 125-145. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.