- Sikes K., Van Walwijk M., McGill R. (2011) Algal fuel industry overview and Feasibility assessment, in Algae as a feedstock for biofuels: an assessment of the state of technology and opportunities, IEA Advanced Motor Fuels Implementing Agreement. [Google Scholar]
- Davis R., Aden A., Pienkos P.T. (2011) Techno-economic analysis of autotrophic microalgae for fuel production, Applied Energy 88, 3524-3531. [CrossRef] [Google Scholar]
- Richardson J.W., Johnson M.D., Outlaw J.L. (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest, Algal Research 1, 93-100. [CrossRef] [Google Scholar]
- Slome S. (2012) in Algae Technology, White Plains: Nexant, New York. [Google Scholar]
- Sudeep V. (2010) in Biofuels from algae, SRI Consulting, Menlo Park, California. [Google Scholar]
- Chisti Y. (2007) Biodiesel from microalgae, Biotechnology Advances 25, 294-306. [CrossRef] [PubMed] [Google Scholar]
- Collet P. (2012) Analyse de Cycle de Vie de la valorisation énergétique de la biomasse algale : prise en compte des aspects dynamiques dans l’étape d’inventaire, Thesis, École Nationale Supérieure Agronomique de Montpellier, Pôle ELSA, Chapitre 2 : Revue bibliographique microalgues et ACV, pp. 21-65. [Google Scholar]
- Patil V., Tran K.Q., Giselrod H.R. (2008) Towards Sustainable Production of Biofuels from Microalgae, Int J Mol Sci., 9, 1188-1195. DOI: 10.3390/ijms9071188. [Google Scholar]
- Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., Bernard, O. (2009) Life cycle assessment of biodiesel production from microalgae, Environmental Science Technology 43, (17), 6475-6481. [Google Scholar]
- Khoo H.H., Sharratt P.N., Das P., Balasubramanian R.K., Naraharisetti P.K., Shaik S. (2011) Life cycle energy and CO2 analysis of microalgae to biodiesel: preliminary results and comparisons, Bioresource Technology 102, 5800-5807. [CrossRef] [PubMed] [Google Scholar]
- Razon L.F., Tan R.R. (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis, Applied Energy 88, 3507-3514. [CrossRef] [Google Scholar]
- Benemann J., Woertz I., Lundquis T. (2012) Life Cycle Assessment for Microalgae Oil Production, Disruptive Science and Technology 1, 68-78. DOI: 10.1089/dst.2012.0013. [CrossRef] [Google Scholar]
- Campbell P.K., Beer T., Batten D. (2011) Life cycle assessment in biodiesel production from microalgae in ponds, Bioresource Technology 102, 50-56. [Google Scholar]
- Clarens, A.F., Resurrecccion, E.P., White, M.A., Colosi, L. M. (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks, Environmental Science Technology 44(5), 1813-1819. [Google Scholar]
- Sander K., Murthy G. (2010) Life cycle analysis of algae biodiesel, International Journal Life Cycle Assessment 15, 704-714. [Google Scholar]
- Vera-Morales M, Schafer A. (2009) Fuel-cycle assessment of alternative aviation fuels, University of Cambridge, OMEGA Office, 28 Avril. [Google Scholar]
- Stratton R.W., Wong Hsin Min, Hileman J.I. (2010) (MIT) Life cycle greenhouse gas emissions from alternative jet fuels, PARTNER Project 28 report version 1.1, 04/2010. [Google Scholar]
- US Environmental Protection Agency (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, EPA, Washington, DC. [Google Scholar]
- Collet P., Hélias A., Lardon L., Ras M., Goy R.-A., Steyer J.-P. (2011) Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology 102, 207-214. [CrossRef] [PubMed] [Google Scholar]
- Seaweed as biofuel? Metabolic engineering makes it a viable option (Published: Wednesday, December 15, 2010 - 17:33 in Biology & Nature), from website: http://esciencenews.com/articles/2010/12/15/seaweed.biofuel.metabolic.engineering.makes.it.a.viable.option accessed 16/11/2012. [Google Scholar]
- Perez R., Kaas R., Campello F, Arbault S., Barbaroux O. (1992) La culture des algues marines dans le monde, http:// archimer.ifremer.fr/doc/1992/rapport-4402.pdf. [Google Scholar]
- FAO 2010 Statistics (2008 data) from IFREMER website: http://aquaculture.ifremer.fr/statistiques_mondiales/ presentation_generale/production_aquacole. [Google Scholar]
- Kimon T. Bird (1984) An historical perspective on economics and system costs of kelp cultivation for bioconversion to methane, Algal Biomass Technologies: Proceedings of a workshop on the present status and future directions for biotechnologies based on algal biomass production, University of Colorado, Algal Biomass Technologies. [Google Scholar]
- Roesijadi G., Copping A.E., Huesemann M.H., Forster J., Benemann J.R. (2008) Techno-Economic Feasibility Analysis of Offshore Seaweed Farming for Bioenergy and Biobased Products, Battelle Pacific Northwest Division Report Number PNWD-3931. [Google Scholar]
- Website: http://www.affmar.gouv.nc/portal/page/portal/affmar/missions/presentation, accessed 16/11/2012. [Google Scholar]
- SupAgro Montpellier: International Centre for Higher Education in Agricultural Sciences: http://www.supagro.fr/web/pages/?id1=20&page=455. [Google Scholar]
- Website: http://investissement-avenir.gouvernement.fr/, accessed 16/11/2012. [Google Scholar]
- Website Biofuels Digest: http://biofuelsdigest.com/bdigest/2010/06/23/with-a-little-kelp-from-my-friends-macroalgaeprojects-concepts-bloom, accessed 16/11/2012. [Google Scholar]
- Platt T., Subba Rao D.V. (1975) Cooper J.P. (ed), Primary production of marine macrophytes, Photosynthesis and productivity in different environments, Cambridge, pp. 249-280. [Google Scholar]
- Charpy-Roubaud C., Sournia A. (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans, Marine Microbial Food Webs 4, 31-57. [Google Scholar]
- Huber G., Iborra S., Corma A. (2006) Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev. 106, 4044-4098. [CrossRef] [PubMed] [Google Scholar]
- Huber G.W. (2008) Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries, University of Massachusetts, Amherst, National Science Foundation, Washington DC, pp. 66-88 (accessed November 2010) http://www.ecs. umass.edu/biofuels/Images/Roadmap2-08.pdf. [Google Scholar]
- Chheda J.N., Dumesic J.A. (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates, Catalysis Today 123, 59-70. [CrossRef] [Google Scholar]
- Website: http://www.virent.com/wordpress/wp-content/uploads/2011/12/Virent-Fact-Sheet-2012.pdf accessed 08/11/2012. [Google Scholar]
- Website: http://www.agprofessional.com/news/First-isobutanol-shipped-from-Luverne-Minn-165338596.html?ref=596 accessed 08/11/2012. [Google Scholar]
- Hayashi N., Sugiyam J., Okano T., Ishihara M. (1998) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type, Carbohydrate Research 305, 261-269. [CrossRef] [Google Scholar]
- Kuhad, R.C., Gupta, R., Khasa, Y.P., Singh, A., Zhang, Y.-H.P. (2011) Bioethanol production from pentose sugars: Current status and future prospects, Renewable Sustainable Energy Reviews 15, (9), 4950-4962. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
|
|
---|---|---|
Page(s) | 875 - 898 | |
DOI | https://doi.org/10.2516/ogst/2013164 | |
Published online | 31 October 2013 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.