IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 209 - 221
DOI https://doi.org/10.2516/ogst/2010028
Publié en ligne 12 avril 2011
  • Lyngfelt A., Oxygen Carriers for chemical-looping combustion – 4000 h of operational experience, Oil Gas Sci. Technol., to be published. [Google Scholar]
  • Lewis W.K., Gilliland E.R., Sweeney W.P. (1951) Gasification of Carbon Metal Oxides in a Fluidized Powder Bed, Chem. Eng. Prog. 47, 5, 251-256. [Google Scholar]
  • Lewis W.K., Gilliland E.R. (1954) US Patent 2,665,972, January 12. [Google Scholar]
  • Mattisson T., Lyngfelt A., Leion H. (2009) Chemical-looping with oxygen uncoupling for combustion of solid fuels, Int. J. Greenhouse Gas Control 3, 11-19. [CrossRef] [Google Scholar]
  • Mattisson T., Leion H., Lyngfelt A. (2009) Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke, Fuel 88, 683-690. [CrossRef] [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2008) Solid fuels in chemical looping combustion, Int. J. Greenhouse Gas Control 2, 180-193. [CrossRef] [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2008) Combustion of a German lignite using chemical-looping with oxygen uncoupling (CLOU), The Clearwater Coal Conference - The 33rd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida. [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2007) The use of petroleum coke as a fuel in chemical-looping combustion, Fuel 86, 1947-1958. [CrossRef] [Google Scholar]
  • De Diego L.F., Garcia-Labiano F., Adanez J., Gayan P., Abad A., Corbella B.M., Palacios J.M. (2004) Development of Cubased oxygen carriers for chemical-looping combustion, Fuel 83, 13, 1749-1757. [CrossRef] [Google Scholar]
  • Adanez J., de Diego L.F., Garcia-Labiano F., Gayan P., Abad A., Palacios J.M. (2004) Selection of oxygen carriers for chemicallooping combustion, Energ. Fuel. 18, 2, 371-377. [CrossRef] [Google Scholar]
  • De Diego L.F., Gayan P., Garcia-Labiano F., Celaya J., Abad M., Adanez J. (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: Avoiding fluidized bed agglomeration, Energ. Fuel. 19, 5, 1850-1856. [CrossRef] [Google Scholar]
  • Corbella B.M., De Diego L., Garcia F., Adanez J., Palacios J.M. (2005) The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemical looping combustion of methane, Energ. Fuel. 19, 2, 433-441. [CrossRef] [Google Scholar]
  • Garcia-Labiano F., de Diego L.F., Adanez J., Abad A., Gayan P. (2004) Reduction and Oxidation kinetics of copper-based oxygen carrier prepared by impregnation for chemical-looping combustion, Ind. Eng. Chem. Res. 43, 26, 8168-8177. [Google Scholar]
  • Garcia-Labiano F., Adanez J., de Diego L.F., Gayan P., Abad A. (2006) Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion, Energ. Fuel. 20, 1, 26-33. [CrossRef] [Google Scholar]
  • Abad A., Adanez J., Garcia-Labiano F., de Diego L.F., Gayan P., Celaya J. (2007) Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62, 533-549. [CrossRef] [Google Scholar]
  • Forero C.F., Gayan P., de Diego L.F., Abad A., Garcia-Labiano F., Adanez J. (2009) Syngas combustion in a 500 Wth Chemical- Looping Combustion system using an impregnated Cu-based oxygen carrier, Fuel Process. Technol. 90, 12, 1471-1479. [Google Scholar]
  • Adanez J., Gayan P., Celaya J., de Diego L.F., Garcia-Labiano F., Abad A. (2006) Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion, Ind. Eng. Chem. Res. 45, 17, 6075-6080. [Google Scholar]
  • De Diego L.F., Garcia-Labiano F., Gayan P., Celaya J., Palacios J.M., Adanez J. (2007) Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier, Fuel 86, 7-8, 1036-1045. [Google Scholar]
  • Abad A., Adanez J., Garcia-Labiano F., de Diego L.F., Gayan P. (2010) Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier, Combust. Flame 157, 3, 602-615. [CrossRef] [MathSciNet] [Google Scholar]
  • Garcia-Labiano F., Gayan P., Adanez J., De Diego L.F., Forero C.R. (2007) Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers, Environ. Sci. Technol. 41, 16, 5882-5887. [CrossRef] [PubMed] [Google Scholar]
  • Dennis J.S., Müller C.R., Scott S.A. (2010) In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: Performance with bituminous coals, Fuel 89, 2353-2364. [CrossRef] [Google Scholar]
  • Siriwardane R., Tian H., Miller D., Richards G., Simonyi T., Poston J. (2010) Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion, Combust. Flame 157, 11, 2198-2208. [CrossRef] [Google Scholar]
  • Siriwardane R., Tian H., Richards G., Simonyi T., Postoni J. (2009) Chemical-looping combustion of coal with metal oxide oxygen carriers, Energ. Fuel. 23, 3885-3892. [CrossRef] [Google Scholar]
  • Li. F., Kim H., Sridhar D., Zeng L., Wang F., Tong A., Fan L.-S. (2009) Coal Direct Chemical Looping (CDCL) process for hydrogen and power generation, The Clearwater Coal Conference - The 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida. [Google Scholar]
  • Berguerand N., Lyngfelt A. (2010) Batch Testing of Solid Fuels with Ilmenite in a 10 kWth Chemical-Looping Combustor, Fuel 89, 1749-1762. [CrossRef] [Google Scholar]
  • Berguerand N. (2007) Design and operation of a 10 kWth chemicallooping combustor for solid fuels, PhD Thesis, Department of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden. [Google Scholar]
  • Lyngfelt A., Leckner B., Mattison T. (2001) A fluidized-bed combustion process with inherent CO2 separation: application of chemical-looping combustion, Chem. Eng. Sci. 56, 3101-3113. [Google Scholar]
  • Chadda D., Ford J.D., Fahim M.A. (1989) Chemical Energy Storage by the reaction cycle CuO/Cu2O, Int. J. Energ. Res. 13, 63-73. [CrossRef] [Google Scholar]
  • Prisedsky V.V., Vinogradov V.M. (2004) Fragmentation of diffusion zone in high-temperature oxidation of copper, J. Solid State Chem. 177, 4258-4268. [CrossRef] [Google Scholar]
  • Zhu Y., Mimura K., Isshiki M. (2004) Oxidation Mechanism of Cu2O to CuO at 600-1050°C, Oxid. Met. 62, 3-4. [Google Scholar]
  • Poling B.E., Prausnitz J.M., O’Connell J.P. (2001) The Properties of Gases and Liquids, 5th ed., Mc-Graw Hill, New York. [Google Scholar]
  • Hurt R.F., Mitchell R.E. (1992) Unified High-Temperature Char Combustion Kinetics for a suite of coals of various rank, 24th International Symposium on Combustion, pp. 1243-1250. [Google Scholar]
  • Hamor R.J., Smith I.W., Tyler R.J. (1973) Kinetics of Combustion of a Pulverized Brown Coal Char between 630 and 2200 K, Combust. Flame 21, 2, 153-162. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.