IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 209 - 221
DOI https://doi.org/10.2516/ogst/2010028
Published online 12 April 2011
  • Lyngfelt A., Oxygen Carriers for chemical-looping combustion – 4000 h of operational experience, Oil Gas Sci. Technol., to be published. [Google Scholar]
  • Lewis W.K., Gilliland E.R., Sweeney W.P. (1951) Gasification of Carbon Metal Oxides in a Fluidized Powder Bed, Chem. Eng. Prog. 47, 5, 251-256. [Google Scholar]
  • Lewis W.K., Gilliland E.R. (1954) US Patent 2,665,972, January 12. [Google Scholar]
  • Mattisson T., Lyngfelt A., Leion H. (2009) Chemical-looping with oxygen uncoupling for combustion of solid fuels, Int. J. Greenhouse Gas Control 3, 11-19. [CrossRef] [Google Scholar]
  • Mattisson T., Leion H., Lyngfelt A. (2009) Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke, Fuel 88, 683-690. [CrossRef] [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2008) Solid fuels in chemical looping combustion, Int. J. Greenhouse Gas Control 2, 180-193. [CrossRef] [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2008) Combustion of a German lignite using chemical-looping with oxygen uncoupling (CLOU), The Clearwater Coal Conference - The 33rd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida. [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2007) The use of petroleum coke as a fuel in chemical-looping combustion, Fuel 86, 1947-1958. [CrossRef] [Google Scholar]
  • De Diego L.F., Garcia-Labiano F., Adanez J., Gayan P., Abad A., Corbella B.M., Palacios J.M. (2004) Development of Cubased oxygen carriers for chemical-looping combustion, Fuel 83, 13, 1749-1757. [CrossRef] [Google Scholar]
  • Adanez J., de Diego L.F., Garcia-Labiano F., Gayan P., Abad A., Palacios J.M. (2004) Selection of oxygen carriers for chemicallooping combustion, Energ. Fuel. 18, 2, 371-377. [CrossRef] [Google Scholar]
  • De Diego L.F., Gayan P., Garcia-Labiano F., Celaya J., Abad M., Adanez J. (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: Avoiding fluidized bed agglomeration, Energ. Fuel. 19, 5, 1850-1856. [CrossRef] [Google Scholar]
  • Corbella B.M., De Diego L., Garcia F., Adanez J., Palacios J.M. (2005) The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemical looping combustion of methane, Energ. Fuel. 19, 2, 433-441. [CrossRef] [Google Scholar]
  • Garcia-Labiano F., de Diego L.F., Adanez J., Abad A., Gayan P. (2004) Reduction and Oxidation kinetics of copper-based oxygen carrier prepared by impregnation for chemical-looping combustion, Ind. Eng. Chem. Res. 43, 26, 8168-8177. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Garcia-Labiano F., Adanez J., de Diego L.F., Gayan P., Abad A. (2006) Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion, Energ. Fuel. 20, 1, 26-33. [CrossRef] [Google Scholar]
  • Abad A., Adanez J., Garcia-Labiano F., de Diego L.F., Gayan P., Celaya J. (2007) Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62, 533-549. [CrossRef] [Google Scholar]
  • Forero C.F., Gayan P., de Diego L.F., Abad A., Garcia-Labiano F., Adanez J. (2009) Syngas combustion in a 500 Wth Chemical- Looping Combustion system using an impregnated Cu-based oxygen carrier, Fuel Process. Technol. 90, 12, 1471-1479. [CrossRef] [Google Scholar]
  • Adanez J., Gayan P., Celaya J., de Diego L.F., Garcia-Labiano F., Abad A. (2006) Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion, Ind. Eng. Chem. Res. 45, 17, 6075-6080. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • De Diego L.F., Garcia-Labiano F., Gayan P., Celaya J., Palacios J.M., Adanez J. (2007) Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier, Fuel 86, 7-8, 1036-1045. [Google Scholar]
  • Abad A., Adanez J., Garcia-Labiano F., de Diego L.F., Gayan P. (2010) Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier, Combust. Flame 157, 3, 602-615. [CrossRef] [MathSciNet] [Google Scholar]
  • Garcia-Labiano F., Gayan P., Adanez J., De Diego L.F., Forero C.R. (2007) Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers, Environ. Sci. Technol. 41, 16, 5882-5887. [CrossRef] [PubMed] [Google Scholar]
  • Dennis J.S., Müller C.R., Scott S.A. (2010) In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: Performance with bituminous coals, Fuel 89, 2353-2364. [CrossRef] [Google Scholar]
  • Siriwardane R., Tian H., Miller D., Richards G., Simonyi T., Poston J. (2010) Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion, Combust. Flame 157, 11, 2198-2208. [CrossRef] [Google Scholar]
  • Siriwardane R., Tian H., Richards G., Simonyi T., Postoni J. (2009) Chemical-looping combustion of coal with metal oxide oxygen carriers, Energ. Fuel. 23, 3885-3892. [CrossRef] [Google Scholar]
  • Li. F., Kim H., Sridhar D., Zeng L., Wang F., Tong A., Fan L.-S. (2009) Coal Direct Chemical Looping (CDCL) process for hydrogen and power generation, The Clearwater Coal Conference - The 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida. [Google Scholar]
  • Berguerand N., Lyngfelt A. (2010) Batch Testing of Solid Fuels with Ilmenite in a 10 kWth Chemical-Looping Combustor, Fuel 89, 1749-1762. [CrossRef] [Google Scholar]
  • Berguerand N. (2007) Design and operation of a 10 kWth chemicallooping combustor for solid fuels, PhD Thesis, Department of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden. [Google Scholar]
  • Lyngfelt A., Leckner B., Mattison T. (2001) A fluidized-bed combustion process with inherent CO2 separation: application of chemical-looping combustion, Chem. Eng. Sci. 56, 3101-3113. [CrossRef] [Google Scholar]
  • Chadda D., Ford J.D., Fahim M.A. (1989) Chemical Energy Storage by the reaction cycle CuO/Cu2O, Int. J. Energ. Res. 13, 63-73. [CrossRef] [Google Scholar]
  • Prisedsky V.V., Vinogradov V.M. (2004) Fragmentation of diffusion zone in high-temperature oxidation of copper, J. Solid State Chem. 177, 4258-4268. [CrossRef] [Google Scholar]
  • Zhu Y., Mimura K., Isshiki M. (2004) Oxidation Mechanism of Cu2O to CuO at 600-1050°C, Oxid. Met. 62, 3-4. [Google Scholar]
  • Poling B.E., Prausnitz J.M., O’Connell J.P. (2001) The Properties of Gases and Liquids, 5th ed., Mc-Graw Hill, New York. [Google Scholar]
  • Hurt R.F., Mitchell R.E. (1992) Unified High-Temperature Char Combustion Kinetics for a suite of coals of various rank, 24th International Symposium on Combustion, pp. 1243-1250. [Google Scholar]
  • Hamor R.J., Smith I.W., Tyler R.J. (1973) Kinetics of Combustion of a Pulverized Brown Coal Char between 630 and 2200 K, Combust. Flame 21, 2, 153-162. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.