IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 173 - 180
DOI https://doi.org/10.2516/ogst/2010036
Publié en ligne 13 avril 2011
  • Lyon R.K., Cole J.A. (2000) Unmixed combustion: An alternative to fire, Combust. Flame 121, 1-2, 249-261. [CrossRef] [Google Scholar]
  • Lyngfelt A. (2010) Oxygen-Carriers for Chemical-Looping Combustion - Operational Experience, Les Rencontres Scientifiques de l’IFP: 1st International Conference on Chemical Looping, Lyon, 2010. [Google Scholar]
  • Lewis W.K., Gilliland E.R. (1954) Production of pure carbon dioxide, United States Patent No. 2665972. [Google Scholar]
  • Welty Jr A.B. (1951) Apparatus for conversion of hydrocarbons, United States patent No. 2550741. [Google Scholar]
  • Knoche K.F., Richter H. (1968) Verbesserung der Reversibilität von Verbrennungsprozessen, Brennst.-Wärme-Kraft 20, 205-210 (in German). [Google Scholar]
  • Ishida M., Jin H. (1997) CO2 recovery in a power plant with chemical looping combustion, Energ. Convers. Manage. 38, Suppl. 1, 187-192. [CrossRef] [Google Scholar]
  • Lyngfelt A., Thunman H. (2004) Chemical-looping combustion: Design, construction and 100 h of operational experience of a 10 kW prototype, in Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture Project: Vol. 1 - Capture and Separation of Carbon Dioxide from Combustion, Thomas D. (ed.), Elsevier, London, ISBN 0080445705. [Google Scholar]
  • Ryu H.J., Jin G.T., Yi C.K. (2004) Demonstration of inherent CO2 separation and no NOx emission in a 50 kWth chemical-looping combustor: Continuous reduction and oxidation experiment, in Seventh International Conference on Greenhouse Gas Control Technologies (GHGT-7), pp. 1907-1910. [Google Scholar]
  • Johansson E., Mattisson T., Lyngfelt A., Thunman H. (2006) Combustion of syngas and natural gas in a 300 W chemical-looping combustor, Chem. Eng. Res. Des. 84, 9A, 819-827. [CrossRef] [Google Scholar]
  • Adánez J., Gayán P., Celaya J., De Diego L.F., García-Labiano F., Abad A. (2006) Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion, Ind. Eng. Chem. Res. 45, 17, 6075-6080. [Google Scholar]
  • Kolbitsch P., Pröll T., Bolhàr-Nordenkampf J., Hofbauer H. (2009) Design of a chemical looping combustor using a Dual Circulating Fluidized Bed (DCFB) reactor system, Chem. Eng. Technol. 32, 3, 398-403. [CrossRef] [Google Scholar]
  • Pröll T., Rupanovits K., Kolbitsch P., Bolhàr-Nordenkampf J., Hofbauer H. (2009) Cold flow model study on a Dual Circulating Fluidized Bed (DCFB) system for chemical looping processes, Chem. Eng. Technol. 32, 3, 418-424. [CrossRef] [Google Scholar]
  • Kolbitsch P., Pröll T., Bolhar-Nordenkampf J., Hofbauer H. (2009) Characterization of chemical looping pilot plant performance via experimental determination of solids conversion, Energ. Fuel. 23, 3, 1450-1455. [CrossRef] [Google Scholar]
  • Kolbitsch P., Bolhàr-Nordenkampf J., Pröll T., Hofbauer H. (2009) Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation, Ind. Eng. Chem. Res. 48, 11, 5542-5547. [Google Scholar]
  • Pröll T., Kolbitsch P., Bolhàr-Nordenkampf J., Hofbauer H. (2009) A novel Dual Circulating Fluidized Bed (DCFB) system for chemical looping processes, AIChE J. 55, 12, 3255-3266. [CrossRef] [Google Scholar]
  • Kolbitsch P., Bolhàr-Nordenkampf J., Pröll T., Hofbauer H. (2010) Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit, Int. J. Greenhouse Gas Cont. 4, 2, 180-185. [Google Scholar]
  • Pröll T., Bolhàr-Nordenkampf J., Kolbitsch P., Hofbauer H. (2010) Syngas and a separate nitrogen/argon stream via chemical looping reforming - A 140 kW pilot plant study, Fuel 89, 6, 1249-1256. [CrossRef] [Google Scholar]
  • Bolhàr-Nordenkampf J., Pröll T., Kolbitsch P., Hofbauer H. (2009) Comprehensive Modeling Tool for Chemical Looping Based Processes, Chem. Eng. Technol. 32, 3, 410-417. [CrossRef] [Google Scholar]
  • Lyngfelt A., Leckner B., Mattisson T. (2001) A fluidized bed combustion process with inherent CO2 separation, Application of Chemical Looping Combustion, Chem. Eng. Sci. 56, 10, 3101-3113. [Google Scholar]
  • Ryu H., Bae D., Jin G. (2002) Chemical-looping combustion process with inherent CO2 separation; Reaction kinetics of oxygen carrier particles and 50 kWth reactor design, in The World Congress of Korean and Korean Ethnic Scientists and Engineers, Seoul, Korea, pp. 738-743. [Google Scholar]
  • Hugi E., Reh L. (1998) Design of cyclones with high solids entrance loads, Chem. Eng. Technol. 21, 9, 716-719. [CrossRef] [Google Scholar]
  • Linderholm C., Mattisson T., Lyngfelt A. (2009) Longterm integrity testing of spray-dried particles in a 10 kW chemical-looping combustor using natural gas as fuel, Fuel 88, 2083-2096. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.