IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 173 - 180
DOI https://doi.org/10.2516/ogst/2010036
Published online 13 April 2011
  • Lyon R.K., Cole J.A. (2000) Unmixed combustion: An alternative to fire, Combust. Flame 121, 1-2, 249-261. [CrossRef] [Google Scholar]
  • Lyngfelt A. (2010) Oxygen-Carriers for Chemical-Looping Combustion - Operational Experience, Les Rencontres Scientifiques de l’IFP: 1st International Conference on Chemical Looping, Lyon, 2010. [Google Scholar]
  • Lewis W.K., Gilliland E.R. (1954) Production of pure carbon dioxide, United States Patent No. 2665972. [Google Scholar]
  • Welty Jr A.B. (1951) Apparatus for conversion of hydrocarbons, United States patent No. 2550741. [Google Scholar]
  • Knoche K.F., Richter H. (1968) Verbesserung der Reversibilität von Verbrennungsprozessen, Brennst.-Wärme-Kraft 20, 205-210 (in German). [Google Scholar]
  • Ishida M., Jin H. (1997) CO2 recovery in a power plant with chemical looping combustion, Energ. Convers. Manage. 38, Suppl. 1, 187-192. [CrossRef] [Google Scholar]
  • Lyngfelt A., Thunman H. (2004) Chemical-looping combustion: Design, construction and 100 h of operational experience of a 10 kW prototype, in Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture Project: Vol. 1 - Capture and Separation of Carbon Dioxide from Combustion, Thomas D. (ed.), Elsevier, London, ISBN 0080445705. [Google Scholar]
  • Ryu H.J., Jin G.T., Yi C.K. (2004) Demonstration of inherent CO2 separation and no NOx emission in a 50 kWth chemical-looping combustor: Continuous reduction and oxidation experiment, in Seventh International Conference on Greenhouse Gas Control Technologies (GHGT-7), pp. 1907-1910. [Google Scholar]
  • Johansson E., Mattisson T., Lyngfelt A., Thunman H. (2006) Combustion of syngas and natural gas in a 300 W chemical-looping combustor, Chem. Eng. Res. Des. 84, 9A, 819-827. [CrossRef] [Google Scholar]
  • Adánez J., Gayán P., Celaya J., De Diego L.F., García-Labiano F., Abad A. (2006) Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion, Ind. Eng. Chem. Res. 45, 17, 6075-6080. [Google Scholar]
  • Kolbitsch P., Pröll T., Bolhàr-Nordenkampf J., Hofbauer H. (2009) Design of a chemical looping combustor using a Dual Circulating Fluidized Bed (DCFB) reactor system, Chem. Eng. Technol. 32, 3, 398-403. [CrossRef] [Google Scholar]
  • Pröll T., Rupanovits K., Kolbitsch P., Bolhàr-Nordenkampf J., Hofbauer H. (2009) Cold flow model study on a Dual Circulating Fluidized Bed (DCFB) system for chemical looping processes, Chem. Eng. Technol. 32, 3, 418-424. [CrossRef] [Google Scholar]
  • Kolbitsch P., Pröll T., Bolhar-Nordenkampf J., Hofbauer H. (2009) Characterization of chemical looping pilot plant performance via experimental determination of solids conversion, Energ. Fuel. 23, 3, 1450-1455. [CrossRef] [Google Scholar]
  • Kolbitsch P., Bolhàr-Nordenkampf J., Pröll T., Hofbauer H. (2009) Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation, Ind. Eng. Chem. Res. 48, 11, 5542-5547. [Google Scholar]
  • Pröll T., Kolbitsch P., Bolhàr-Nordenkampf J., Hofbauer H. (2009) A novel Dual Circulating Fluidized Bed (DCFB) system for chemical looping processes, AIChE J. 55, 12, 3255-3266. [CrossRef] [Google Scholar]
  • Kolbitsch P., Bolhàr-Nordenkampf J., Pröll T., Hofbauer H. (2010) Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit, Int. J. Greenhouse Gas Cont. 4, 2, 180-185. [Google Scholar]
  • Pröll T., Bolhàr-Nordenkampf J., Kolbitsch P., Hofbauer H. (2010) Syngas and a separate nitrogen/argon stream via chemical looping reforming - A 140 kW pilot plant study, Fuel 89, 6, 1249-1256. [CrossRef] [Google Scholar]
  • Bolhàr-Nordenkampf J., Pröll T., Kolbitsch P., Hofbauer H. (2009) Comprehensive Modeling Tool for Chemical Looping Based Processes, Chem. Eng. Technol. 32, 3, 410-417. [CrossRef] [Google Scholar]
  • Lyngfelt A., Leckner B., Mattisson T. (2001) A fluidized bed combustion process with inherent CO2 separation, Application of Chemical Looping Combustion, Chem. Eng. Sci. 56, 10, 3101-3113. [Google Scholar]
  • Ryu H., Bae D., Jin G. (2002) Chemical-looping combustion process with inherent CO2 separation; Reaction kinetics of oxygen carrier particles and 50 kWth reactor design, in The World Congress of Korean and Korean Ethnic Scientists and Engineers, Seoul, Korea, pp. 738-743. [Google Scholar]
  • Hugi E., Reh L. (1998) Design of cyclones with high solids entrance loads, Chem. Eng. Technol. 21, 9, 716-719. [CrossRef] [Google Scholar]
  • Linderholm C., Mattisson T., Lyngfelt A. (2009) Longterm integrity testing of spray-dried particles in a 10 kW chemical-looping combustor using natural gas as fuel, Fuel 88, 2083-2096. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.