Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Numéro 2, March-April 2010
Page(s) 299 - 313
DOI https://doi.org/10.2516/ogst/2009038
Publié en ligne 5 novembre 2009
  • Ali J.K. (1997) Development in measurement and interpretation techniques in core flood tests to determine relative permeabilities, SPE paper 39016, Rio de Janeiro, Brazil, 29 August-2 September. [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995) Flow Regimes and Relative Permeabilities during Steady-State Two-Phase Flow in Porous Media, J. Fluid Mech. 293, 207. [Google Scholar]
  • Birovljev A., Furuberg L., Feder J., Jossang T., Maloy K.J.Aharony A. (1991) Gravity invasion percolation in two dimensions: experiment and simulation, Phys. Rev. Lett. 67, 584-587 [CrossRef] [PubMed] [Google Scholar]
  • Blackwell J.T.Terry M.W. (1959) Factors influencing the efficiency of miscible displacement, Trans AIME 216, 1-8 [Google Scholar]
  • Blunt M.King P. (1991) Relative permeabilities from two- and three-dimensional pore-scale network modeling, Transport Porous Med. 6, 407-433 [Google Scholar]
  • Broyden C.G. (1965) A Class of Methods for Solving Nonlinear Simultaneous Equations, Math. Comput. 19, 92, 577-593. [Google Scholar]
  • Constantinides G.N., Payatakes A.C. (1996) Network Simulation of Steady-State Two-Phase Flow in Consolidated Porous Media, AIChE J. 42, 369. [CrossRef] [PubMed] [Google Scholar]
  • Dumore J.M. (1964) Stability consideration in downward miscible displacement, SPEJ 356-362. [Google Scholar]
  • Ferer M., Sams W.N., Geisbrecht R.A.Smith D.H. (1995) Fractal nature of viscous fingering in two-dimensional pore level models, AIChE J. 41, 749-763 [CrossRef] [Google Scholar]
  • Ferer M., Bromhal G.S.Smith D.H. (2003) Pore-level modeling of immiscible drainage: validation in the invasion percolation and DLA limits, Physica A 319, 11-35 [CrossRef] [Google Scholar]
  • Firoozabadi A., Aziz K. (1988) Relative permeability from centrifuge data, Proceeding of the 56th California regional meeting of the SPE, Okland, CA, 2-4 April, SPE paper 15059. [Google Scholar]
  • Fourar M., Bories S., Lenormand R., Persoff P. (1993) Two-Phase Flow in Smooth and Rough Fractures: Measurement and Correlation by Porous-Medium and Pipe Flow Models, Water Resour. Res. 29, 3699. [Google Scholar]
  • Goode P.A.Ramakrishnan T.S. (1993) Momentum Transfer across Fluid-Fluid Interfaces in Porous Media: a Network Model, AIChE J. 39, 1124-1993 [CrossRef] [Google Scholar]
  • Gouyet J.F., Rosso M.Sapoval B. (1988) Fractal structure of diffusion and invasion fronts in three- dimensional lattices through the gradient percolation approach, Phys. Rev. B 37, 1832-1838 [CrossRef] [Google Scholar]
  • Hagoort J. (1980) Oil recovery by gravity drainage, SPE J. 139-150. [Google Scholar]
  • Hirasaki G.J., Rohan J.H., Dudley J.W. (1995) Interpretation of oil-water relative permeabilities from centrifuge experiments, SPE Adv. Technol. 3, 1, 66-75. [Google Scholar]
  • Hughes R.G., Blunt M.J. (2000) Pore Scale Modeling of Rate Effects in Imbibition, Transport Porous Med. 40, 295. [Google Scholar]
  • Jones S.C.Roszelle W.O. (1978) Graphical techniques for determining relative permeability from displacement experiments, J. Petrol. Sci. Tech. 30, 807-817 [Google Scholar]
  • Lovoll G., Meheust Y., Maloy K.J.Aker E. (2005) Competition of gravity, capillary and viscous forces during drainage in a two- dimensional porous medium, a pore scale study, Energy J. 30, 6, 861-872 [CrossRef] [Google Scholar]
  • Meheust Y., Lovoll G., Maloy K.J.Schmittbuhl J. (2002) Interface scaling in a 2d porous medium under combined viscous, gravity and capillary effects, Phys. Rev. E 66, 51603-51615 [Google Scholar]
  • Mohanty K.K.Miller A.E. (1991) Factors influencing unsteady relative permeability of a mixed-wet reservoir rock, Soc. Petrol. Eng. Form. Eval. 6, 349-358 [Google Scholar]
  • Or D. (2008) Scaling of capillary, gravity and viscous forces affecting flow morphology in undersaturated porous media, Adv. Water Resour. 31, 1129-1136 [CrossRef] [Google Scholar]
  • Persoff P.Pruess K. (1995) Two-Phase Flow Visualization and Relative Permeability Measurement in Natural Rough-Walled Rock Fractures, Water Resour. Res. 31, 1175-1995 [Google Scholar]
  • Philip J.R. (1975) Stability analysis of infiltration, Soil Sci. Soc. Am. Proc. 39, 1042-1049 [CrossRef] [Google Scholar]
  • Raats P.A.C. (1973) Unstable wetting fronts in uniform and nonuniform soils, Soil Sci. Soc. 36, 681-685 [CrossRef] [Google Scholar]
  • Saeedi M. (2007) Modeling and experiments of drainage relative permeability and capillary pressure functions using a centrifuge, Msc thesis, University of Calgary, Canada, 2007. [Google Scholar]
  • Singh M., Mani V., Honarpour M.M., Mohanty K.K. (2001) Comparison of viscous and gravity dominated gas-oil relative permeabilities, J. Petrol. Sci. Eng. 30, 67-81. [CrossRef] [Google Scholar]
  • Singh M., Mohanty K.K. (2003) Dynamic Modeling of Drainage through Three-Dimensional Porous Materials, Chem. Eng. Sci. 58, 1, 3. [Google Scholar]
  • Skauge A., Haskjold G., Thorsen T., Aarra M. (1997) Accuracy of gas-oil relative permeability from two-phase flow experiments. SCA 9707, International Symposium of the Society of Core Analysis, Calgary, Canada. [Google Scholar]
  • Theodoropoulou M.A., Sygouni V., Karoutsos V.Tsakiroglou C.D. (2008) Relative permeability and capillary pressure functions of porous media as related to the displacement growth pattern, Int. J. Multiphas. Flow 31, 1155-1180 [Google Scholar]
  • Tsakiroglou C.D., Theodoropoulou M.Karoutsos V. (2003) Non-equilibrium capillary pressure and relative permeability curves of porous media, AIChE J. 49, 2472-2486 [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Theodoropoulou M.A., Karoutsos V., Papanicolaou D. (2005) Determination of the effective transport coefficients of pore networks from transient immiscible and miscible displacement experiments, Water Resour. Res. J. 41, 2, W02014. [CrossRef] [Google Scholar]
  • Virnovskey G.A., Skjaevaland S.M., Surdal J., Ingsoy P. (1995) Steady-state relative permeability measurements corrected form capillary effect. SPE 30541, Proceeding of the SPE annual technical conference and exhibition, Dallas, TX, 22-25 October. [Google Scholar]
  • Vizika O., Avraam D.G., Payatakes A.C. (1994) On the Role of the Viscosity Ratio during Low-Capillary Number Forced Imbibition in Porous Media, J. Colloid Interf. Sci. 165, 386. [Google Scholar]
  • Wilkinson D. (1986) Percolation effects in immiscible displacement, Phys. Rev. A 34, 1380-1391 [CrossRef] [PubMed] [Google Scholar]
  • Xu B., Salin D.Yortsos Y.C. (1998) Invasion percolation with viscous forces, Phys. Rev. E 57, 739-751 [CrossRef] [Google Scholar]
  • Zhang J.H.Liu Z.H. (1998) Study of the relationship between fractal dimension and viscosity ratio for viscous fingering with a modified DLA model, J. Petrol. Sci. Eng. 21, 123-128 [CrossRef] [Google Scholar]
  • Zhang Y., Shariati M.Yortsos Y.C. (2000) The spreading of immiscible fluids in porous media under the influence of gravity, Transport Porous Med. 38, 117-140 [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.