Open Access
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Number 2, March-April 2010
Page(s) 299 - 313
Published online 05 November 2009
  • Ali J.K. (1997) Development in measurement and interpretation techniques in core flood tests to determine relative permeabilities, SPE paper 39016, Rio de Janeiro, Brazil, 29 August-2 September.
  • Avraam D.G., Payatakes A.C. (1995) Flow Regimes and Relative Permeabilities during Steady-State Two-Phase Flow in Porous Media, J. Fluid Mech. 293, 207. [CrossRef] [MathSciNet] [PubMed]
  • Birovljev A., Furuberg L., Feder J., Jossang T., Maloy K.J.Aharony A. (1991) Gravity invasion percolation in two dimensions: experiment and simulation, Phys. Rev. Lett. 67, 584-587 [CrossRef] [PubMed]
  • Blackwell J.T.Terry M.W. (1959) Factors influencing the efficiency of miscible displacement, Trans AIME 216, 1-8
  • Blunt M.King P. (1991) Relative permeabilities from two- and three-dimensional pore-scale network modeling, Transport Porous Med. 6, 407-433
  • Broyden C.G. (1965) A Class of Methods for Solving Nonlinear Simultaneous Equations, Math. Comput. 19, 92, 577-593. [CrossRef]
  • Constantinides G.N., Payatakes A.C. (1996) Network Simulation of Steady-State Two-Phase Flow in Consolidated Porous Media, AIChE J. 42, 369. [CrossRef] [PubMed]
  • Dumore J.M. (1964) Stability consideration in downward miscible displacement, SPEJ 356-362.
  • Ferer M., Sams W.N., Geisbrecht R.A.Smith D.H. (1995) Fractal nature of viscous fingering in two-dimensional pore level models, AIChE J. 41, 749-763 [CrossRef]
  • Ferer M., Bromhal G.S.Smith D.H. (2003) Pore-level modeling of immiscible drainage: validation in the invasion percolation and DLA limits, Physica A 319, 11-35 [CrossRef]
  • Firoozabadi A., Aziz K. (1988) Relative permeability from centrifuge data, Proceeding of the 56th California regional meeting of the SPE, Okland, CA, 2-4 April, SPE paper 15059.
  • Fourar M., Bories S., Lenormand R., Persoff P. (1993) Two-Phase Flow in Smooth and Rough Fractures: Measurement and Correlation by Porous-Medium and Pipe Flow Models, Water Resour. Res. 29, 3699. [CrossRef]
  • Goode P.A.Ramakrishnan T.S. (1993) Momentum Transfer across Fluid-Fluid Interfaces in Porous Media: a Network Model, AIChE J. 39, 1124-1993 [CrossRef]
  • Gouyet J.F., Rosso M.Sapoval B. (1988) Fractal structure of diffusion and invasion fronts in three- dimensional lattices through the gradient percolation approach, Phys. Rev. B 37, 1832-1838 [CrossRef]
  • Hagoort J. (1980) Oil recovery by gravity drainage, SPE J. 139-150.
  • Hirasaki G.J., Rohan J.H., Dudley J.W. (1995) Interpretation of oil-water relative permeabilities from centrifuge experiments, SPE Adv. Technol. 3, 1, 66-75.
  • Hughes R.G., Blunt M.J. (2000) Pore Scale Modeling of Rate Effects in Imbibition, Transport Porous Med. 40, 295. [CrossRef]
  • Jones S.C.Roszelle W.O. (1978) Graphical techniques for determining relative permeability from displacement experiments, J. Petrol. Sci. Tech. 30, 807-817
  • Lovoll G., Meheust Y., Maloy K.J.Aker E. (2005) Competition of gravity, capillary and viscous forces during drainage in a two- dimensional porous medium, a pore scale study, Energy J. 30, 6, 861-872 [CrossRef]
  • Meheust Y., Lovoll G., Maloy K.J.Schmittbuhl J. (2002) Interface scaling in a 2d porous medium under combined viscous, gravity and capillary effects, Phys. Rev. E 66, 51603-51615 [CrossRef]
  • Mohanty K.K.Miller A.E. (1991) Factors influencing unsteady relative permeability of a mixed-wet reservoir rock, Soc. Petrol. Eng. Form. Eval. 6, 349-358
  • Or D. (2008) Scaling of capillary, gravity and viscous forces affecting flow morphology in undersaturated porous media, Adv. Water Resour. 31, 1129-1136 [CrossRef]
  • Persoff P.Pruess K. (1995) Two-Phase Flow Visualization and Relative Permeability Measurement in Natural Rough-Walled Rock Fractures, Water Resour. Res. 31, 1175-1995 [CrossRef]
  • Philip J.R. (1975) Stability analysis of infiltration, Soil Sci. Soc. Am. Proc. 39, 1042-1049 [CrossRef]
  • Raats P.A.C. (1973) Unstable wetting fronts in uniform and nonuniform soils, Soil Sci. Soc. 36, 681-685 [CrossRef]
  • Saeedi M. (2007) Modeling and experiments of drainage relative permeability and capillary pressure functions using a centrifuge, Msc thesis, University of Calgary, Canada, 2007.
  • Singh M., Mani V., Honarpour M.M., Mohanty K.K. (2001) Comparison of viscous and gravity dominated gas-oil relative permeabilities, J. Petrol. Sci. Eng. 30, 67-81. [CrossRef]
  • Singh M., Mohanty K.K. (2003) Dynamic Modeling of Drainage through Three-Dimensional Porous Materials, Chem. Eng. Sci. 58, 1, 3.
  • Skauge A., Haskjold G., Thorsen T., Aarra M. (1997) Accuracy of gas-oil relative permeability from two-phase flow experiments. SCA 9707, International Symposium of the Society of Core Analysis, Calgary, Canada.
  • Theodoropoulou M.A., Sygouni V., Karoutsos V.Tsakiroglou C.D. (2008) Relative permeability and capillary pressure functions of porous media as related to the displacement growth pattern, Int. J. Multiphas. Flow 31, 1155-1180 [CrossRef]
  • Tsakiroglou C.D., Theodoropoulou M.Karoutsos V. (2003) Non-equilibrium capillary pressure and relative permeability curves of porous media, AIChE J. 49, 2472-2486 [CrossRef]
  • Tsakiroglou C.D., Theodoropoulou M.A., Karoutsos V., Papanicolaou D. (2005) Determination of the effective transport coefficients of pore networks from transient immiscible and miscible displacement experiments, Water Resour. Res. J. 41, 2, W02014. [CrossRef]
  • Virnovskey G.A., Skjaevaland S.M., Surdal J., Ingsoy P. (1995) Steady-state relative permeability measurements corrected form capillary effect. SPE 30541, Proceeding of the SPE annual technical conference and exhibition, Dallas, TX, 22-25 October.
  • Vizika O., Avraam D.G., Payatakes A.C. (1994) On the Role of the Viscosity Ratio during Low-Capillary Number Forced Imbibition in Porous Media, J. Colloid Interf. Sci. 165, 386. [CrossRef]
  • Wilkinson D. (1986) Percolation effects in immiscible displacement, Phys. Rev. A 34, 1380-1391 [CrossRef] [PubMed]
  • Xu B., Salin D.Yortsos Y.C. (1998) Invasion percolation with viscous forces, Phys. Rev. E 57, 739-751 [CrossRef]
  • Zhang J.H.Liu Z.H. (1998) Study of the relationship between fractal dimension and viscosity ratio for viscous fingering with a modified DLA model, J. Petrol. Sci. Eng. 21, 123-128 [CrossRef]
  • Zhang Y., Shariati M.Yortsos Y.C. (2000) The spreading of immiscible fluids in porous media under the influence of gravity, Transport Porous Med. 38, 117-140 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.