Dossier: Molecular Structures of Heavy Oils and Coal Liquefaction Products
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 63, Numéro 1, January-February 2008
Dossier: Molecular Structures of Heavy Oils and Coal Liquefaction Products
Page(s) 69 - 78
DOI https://doi.org/10.2516/ogst:2007081
Publié en ligne 16 janvier 2008
  • Absi-Halabi M.,Stanislaus A.,Trimm D.L. (1991) Coke formation on catalysts during the hydroprocessing of heavy oils, Appl. Catal. 72, 193-215. [CrossRef] [Google Scholar]
  • Furimsky E.,Massoth F.E. (1999) Deactivation of hydroprocessing catalysts, Catal. Today 52, 381-495. [CrossRef] [Google Scholar]
  • Ancheyta J.,Betancourt G.,Centeno G.,Marroquin G.,Alonso F.,Garciafigueroa E. (2002) Catalyst Deactivation during Hydroprocessing of Maya Heavy Crude Oil. 1. Evaluation at Constant Operating Conditions, Energ. Fuel. 16, 1438-1443. [CrossRef] [Google Scholar]
  • Ancheyta J.,Betancourt G.,Centeno G.,Marroquin G. (2003) Catalyst Deactivation during Hydroprocessing of Maya Heavy Crude Oil. II. Effect of Temperature during Time-on-Stream, Energ. Fuel. 17, 462-467. [CrossRef] [Google Scholar]
  • Cable T.L.,Massoth F.E.,Thomas M.G. (1981) Studies on an aged H-coal catalyst, Fuel Process. Technol. 4, 265-275. [CrossRef] [Google Scholar]
  • Song C.,Hanaoka K.,Nomura M. (1992) Influence of Pore Structure and Chemical Properties of Supported Mo Catalysts on Their Performance in Upgrading Heavy Liquids, Energ. Fuel. 6, 619-628. [CrossRef] [Google Scholar]
  • Bodman S.D., Mc Whinnie W.R.,Begon V.,Suelves I.,Lazaro M.J.,Morgan T.J.,Herod A.A.,Kandiyoti R. (2002) Metal-ion pillared clays as hydrocracking catalysts (I): Catalyst preparation and assessment of performance at short contact times, Fuel 81, 449-459. [CrossRef] [Google Scholar]
  • Bodman S.D., Mc Whinnie W.R.,Begon V.,Millan M.,Suelves I.,Lazaro M.J.,Herod A.A.,Kandiyoti R. (2003) Metal-ion pillared clays as hydrocracking catalysts (II): effect of contact time on products from coal extracts and petroleum distillation residues, Fuel 82, 2309-2321. [CrossRef] [Google Scholar]
  • Olson E.S.,Sharma R.K. (1996) Naphthene Upgrading with Pillared Synthetic Clay Catalysts, Energ. Fuel. 10, 587-590. [CrossRef] [Google Scholar]
  • De Stefanis A.,Perez G.,Lilla E.,Ursini O.,Tomlinson A.A.G. (2001) Conversions of resins and asphaltenes in porous catalysts, J. Anal. Appl. Pyrol. 57, 37-44. [CrossRef] [Google Scholar]
  • Occelli M.L.,Schweizer A.E.,Fild C.,Schwering G.,Eckert H.,Auroux A. (2000) Gallioaluminosilicate Molecular Sieves with the Faujasite Structure, J. Catal. 192, 119-127. [CrossRef] [Google Scholar]
  • Manos G.,Yusof I.Y.,Gangas N.H.,Papayannakos N. (2002) Tertiary Recycling of Polyethylene to Hydrocarbon Fuel by Catalytic Cracking over Aluminium Pillared Clays, Energ. Fuel. 16, 485-489. [CrossRef] [Google Scholar]
  • Grzybek T., Klinik J., Olszewska D., Papp H., Smarzowski (2001) The influence of montmorillonite treatment on structure, sorption properties and catalytic behaviour: Part I. Zirconia pillared clays modified with manganese as denox catalysts, J. Pol. J. Chem. 75, 857-868. [Google Scholar]
  • Meier L.P.,Nueesch R.,Madsen F.T. (2001) Organic pillared clays, J. Colloid Interf. Sci. 238, 24-32. [CrossRef] [Google Scholar]
  • Gultek A.,Seckin T.,Onal Y.,Icduygu M.G. (2001) Preparation and phenol captivating properties of polyvinylpyrrolidinone-montmorillonite hybrid materials, J. Appl. Polym. Sci. 81, 512-519. [CrossRef] [Google Scholar]
  • Lacey A.L., Hayes M.H.B., Vaidyanathan L.V. (1997) Preparation of iron pillared clays and their applications for sorption of humic substances, in Humic Substances in Soils, Peats and Waters, Hayes and Wilson. RSC, pp. 219-225. [Google Scholar]
  • Gyftopoulou M.E.,Millan M.,Bridgwater A.V.,Dugwell D.,Kandiyoti R.,Hriljac J.A. (2005) Pillared clays as catalysts for hydrocracking of heavy liquid fuels, Appl. Catal. A-Gen. 282, 205-214. [CrossRef] [Google Scholar]
  • Millan M.,Adell C.,Hinojosa C.,Herod A.A.,Dugwell D.,Kandiyoti R. (2007) Effect of Catalyst Deactivation and Reaction Time on Hydrocracking Heavy Hydrocarbon Liquids, Energ. Fuel. 21, 3, 1370-1378. [CrossRef] [Google Scholar]
  • Zhang Sheng-fu., Xu Bin.,Herod A.A.,Kandiyoti R. (1996) Hydrocracking reactivities of primary coal extracts prepared in a flowing-solvent reactor, Energ. Fuel. 10, 733-742. [CrossRef] [Google Scholar]
  • Lazaro M.J.,Islas C.A.,Herod A.A.,Kandiyoti R. (1999) Calibration of Size Exclusion Chromatography in 1-Methyl-2- Pyrrolidinone for Coal-Derived Materials Using Standards and Mass Spectrometry, Energ. Fuel. 13, 1212-1222. [CrossRef] [Google Scholar]
  • Karaca F.,Islas C.A.,Millan M.,Behrouzi M.,Morgan T.J.,Herod A.A.,Kandiyoti R. (2004) The calibration of size exclusion chromatography columns: Molecular mass distributions of heavy hydrocarbon liquids, Energ. Fuel. 18, 778-788. [CrossRef] [Google Scholar]
  • McDonnell M.E., Walsh E.K. (1988) A guide to materials characterization and chemical analysis, Sibila John P. (ed.), VCH Publishers, pp. 257-261. [Google Scholar]
  • Begon V.,Megaritis A.,Lazaro M.J.,Herod A.A.,Dugwell D.R.,Kandiyoti R. (1998) Changes in sample reactivity and catalyst deactivation during early stages of the hydrocracking of a coal extract, Fuel 77, 1261-1272. [CrossRef] [Google Scholar]
  • Yoshimura Y.,Sato T.,Shimada H.,Nishijima A. (1986) Fuel Sci. Technol. Int. 4, 621. [CrossRef] [Google Scholar]
  • Fleisch T.H.,Meyers B.L.,Hall J.B.,Ott G.L. (1984) Multitechnique analysis of a deactivated resid demetallation catalyst, J. Catal. 86, 147-157. [CrossRef] [Google Scholar]
  • van Doorn J.,Moulijn J.A. (1993) A Model of Coke on Hydrotreating Catalysts under Reaction Conditions, Fuel Process. Technol. 35, 275-287. [CrossRef] [Google Scholar]
  • van Doorn J.,Moulijn J.A.,Djega-Mariadassou G. (1990) Highresolution Electron Microscopy of Spent Ni-Mo/Al203 Hydrotreating Catalysts, Appl. Catal. 63, 77-90. [CrossRef] [Google Scholar]
  • Diez F.,Gates B.C.,Miller J.T.,Sajkowski D.J.,Kukes S.G. (1990) Deactivation of a NiMo-Á-Al2O3 catalyst: Influence of coke on the hydroprocessing activity, Ind. Eng. Chem. Res. 29, 1999-2004. [CrossRef] [Google Scholar]
  • Richardson S.M.,Nagaishi H.,Gray M.R. (1996) Initial Coke Deposition on a NiMo/ã-Al2O3 Bitumen Hydroprocessing Catalyst, Ind. Eng. Chem. Res. 35, 3940-3950. [CrossRef] [Google Scholar]
  • Thomson S.J.,Webb G. (1976) Catalytic hydrogenation of olefins on metals: a new interpretation, J. Chem. Soc. Chem. Commun. 13, 526-527. [CrossRef] [Google Scholar]
  • Islas C.A.,Suelves I.,Carter J.F.,Herod A.A.,Kandiyoti R. (2000) Pyrolysis-gas chromatography/mass spectrometry of a coal extract and its fractions separated by planar chromatography: correlation of structural features with molecular mass, Rapid Commun. Mass Sp. 14, 1766-1782. [CrossRef] [PubMed] [Google Scholar]
  • Islas C.A.,Suelves I.,Li W.,Morgan T.J.,Herod A.A.,Kandiyoti R. (2003) The unusual properties of high mass materials from coal derived liquids, Fuel 82, 1813-1823. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.