- Baltanas M.A.,Froment G.F. (1985) Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins, Comput. Chem. Eng. 9, 1, 71-81. [CrossRef] [Google Scholar]
- Baltanas M.A., Van Raemdock K.K., Froment G.F., Mohedas S.R. 1989) Fundamental kinetic modeling of hydroisomerization and hydrocracking on Noble metal loaded faujasites -1. rate parameters for Hydroisomerization, Ind. Eng. Chem. Res. 28, 7, 899-910. [Google Scholar]
- Beirnaert H.C.,Alleman J.R.,Marin G.B. (2001) A fundamental kinetic model for the catalytic cracking of alkanes on a USY zeolite in the presence of coke formation, Ind. Eng. Chem. Res. 40, 5, 1337-1347. [CrossRef] [Google Scholar]
- Broadbelt L.J.,Stark S.M.,Klein M.T. (1994) Computer-generated Pyrolysis Modeling – on-the-fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res. 33, 790-799. [CrossRef] [Google Scholar]
- Buda F.,Heyberger B.,Fournet R.,Glaude P.A.,Warth V.,Battin-Leclerc F. (2006) Modeling of the gas-phase oxidation of cyclohexane, Energ. Fuel. 20, 4, 1450-1459. [Google Scholar]
- Chevalier C.,Warnatz J.,Melenk H. (1990) Automatic generation of Reaction-mechanism for the Oxidation of higher Hydrocarbons, Ber. Bunsen-Gesellsch. 94, 1362-1367. [CrossRef] [Google Scholar]
- Chinnick S.J.,Baulch D.L.,Aysough P.B. (1988) An expert System for Hydrocarbon Pyrolysis, Chemometr. Intell. Lab. 5, 1, 39-52. [Google Scholar]
- Dalluge J.,Beens J.,Brinkman U.A.T. (2003) Comprehensive twodimensional gas chromatography: a powerful and versatile analytical tool, J. Chromatogr. A 1000, 1-2, 69-108. [Google Scholar]
- Dente M.,Ranzi E. (1979) Detailed Prediction of Olefin Yields from Hydrocarbon Pyrolysis through a Fundamental Simulation Program SPYRO, Comput. Chem. Eng. 3, 61. [CrossRef] [Google Scholar]
- Dente M., Ranzi E., Bozzano G., Faravelli T., Valkenburg P.J.M. (2001) Heavy Component Description in the Kinetic Modelling of Hydrocarbon Pyrolysis, AIChE Spring National Meeting, Houston, TX, USA. [Google Scholar]
- Dente M., Bozzano G., Faravelli T., Marongiu A., Ranzi E. (2007) Kinetic Modeling of Pyrolysis processes in Gas and Condensed Phase, Adv. Chem. Eng. 32, in press. [Google Scholar]
- Dhuyvetter I.,Reyniers M.F.,Froment G.F.,Marin G.B. (2001) The Influence of Dimethyl Disulfide on Naphtha Steam Cracking, Ind. Eng. Chem. Res. 40, 4353-4362. [CrossRef] [Google Scholar]
- Dietz W.A. (1967) Response Factors for Gas Chromatographic Analyses, J. Gas Chromatogr. 5, 68. [CrossRef] [Google Scholar]
- Dierickx J.L.,Plehiers P.M.,Froment G.F. (1986) Online Gas-Chromatographic Analysis of Hydrocarbon Effluents – Calibration Factors and their Correlation, J. Chromatogr. 362, 155. [CrossRef] [Google Scholar]
- DiMaio F.P.,Lignola P.G. (1992) KING, a Kinetic Network Generator, Chem. Eng. Sci. 47, 2713. [CrossRef] [Google Scholar]
- Fedors R. (1974) A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids, Polym. Eng. Sci. 14, 147. [CrossRef] [Google Scholar]
- Feng W.,Vynckier E.,Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [CrossRef] [Google Scholar]
- Floudas C.A., Pardalos P.M. (1996) State of the art in global optimization: Computational methods and Applications, Kluwer, New York. [Google Scholar]
- Froment G.F. (1992) Kinetics and Reactor Design in the Thermal Cracking for Olefin Production, Chem. Eng. Sci. 47, 2163. [CrossRef] [Google Scholar]
- Guiasu S.,Shenitzer A. (1985) The principle of maximum entropy, Math. Intell. 7, 42-48. [CrossRef] [Google Scholar]
- Guillaume D.,Surla K.,Galtier P. (2003) From single events theory to molecular kinetics - application to industrial process modeling, Chem. Eng. Sci. 21, 4861-4869. [Google Scholar]
- Hillewaert L.P.,Dierickx J.L.,Froment G.F. (1988) Computer-Generation of Reaction Schemes and Rate-Equations for Thermal-Cracking, AIChE J. 34, 17-25. [CrossRef] [Google Scholar]
- Hudebine D. (2003) Reconstruction Moléculaire de Coupes Pétrolières, PhD Thesis, École Normale Supérieure de Lyon. [Google Scholar]
- Hudebine D., Vera C., Wahl F., Verstraete J.J. (2002) Molecular Representation of Hydrocarbon Mixtures from Overall Petroleum Analyses. AIChE 2002 Spring Meeting, New Orleans, LA, March, 10-14, Paper 27a. [Google Scholar]
- Hudebine D.,Verstraete J.J. (2004) Molecular Reconstruction of LCO Gasoils from overall Petroleum Analyses, Chem. Eng. Sci. 59, 4755-4763. [CrossRef] [Google Scholar]
- Hughey C.A.,Rodgers R.P.,Marshall A.G. (2002) Resolution of 11 000 compositionally distinct components in a single Electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil, Anal. Chem. 74, 16, 4145-4149. [CrossRef] [PubMed] [Google Scholar]
- Joo E.,Park S.,Lee M. (2001) Pyrolysis Reaction Mechanism for Industrial Naphtha Cracking Furnaces, Ind. Eng. Chem. Res. 40, 2409-2415. [CrossRef] [Google Scholar]
- Kapur J.N., Kesavan H.K. (1992) Entropy Optimization Principles with Applications, Academic Press, San Diego. [Google Scholar]
- Kuo J.C.W.,Wei J. (1969) A Lumping Analysis in Monomolecular Reaction Systems – Analysis of Approximately Lumpable System, Ind. Eng. Chem. Fund. 8, 124. [CrossRef] [Google Scholar]
- Li S., Petzold L.R. (1999) Design of New DASPK for Sensitivity Analysis, UCSB Technical report. [Google Scholar]
- Liguras D.K.,Allen D.T. (1989a) Structural Models for Catalytic Cracking. 1. Model Compound Reactions, Ind. Eng. Chem. Res. 28, 665. [Google Scholar]
- Liguras D.K.,Allen D.T. (1989b) Structural Models for Catalytic Cracking. 2. Reactions of Simulated Oil Mixtures, Ind. Eng. Chem. Res. 28, 674. [CrossRef] [Google Scholar]
- Lozano-Blanco G.,Thybaut J.W.,Surla K.,Galtier P.,Marin G.B. (2006) Fischer-Tropsch synthesis: Development of a microkinetic model for metal catalysis, Oil Gas Sci. Technol. 61, 4, 489-496. [Google Scholar]
- Marrero M.J.,Pardillo F.E.,Fernandez B.S. (1999) Estimation of Hydrocarbon Properties from Group-Interaction Contributions, Chem. Eng. Commun. 176, 161. [CrossRef] [Google Scholar]
- Martens G.G.,Thybaut J.W.,Marin G.B. (2001) Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res. 40, 8, 1832-1844. [CrossRef] [Google Scholar]
- Matheu D.M.,Dean A.M.,Grenda J.M.,Green W.H. (2003) Mechanism Generation with Integrated Pressure dependence: A New Model for Methane Pyrolysis, J. Phys. Chem. A 107, 8552-8565. [Google Scholar]
- Merdrignac I.,Espinat D. (2007) Physicochemical characterization of petroleum fractions: the State of the Art, Oil Gas Sci. Technol. 62, 1, 7-32. [CrossRef] [EDP Sciences] [Google Scholar]
- Mullins O.C.,Rodgers R.P.,Weinheber P.,Klein G.C.,Venkataramanan L.,Andrews A.B.,Marshall A.G. (2006) Oil reservoir characterization via crude oil analysis by downhole fluid analysis in oil wells with visible-near-infrared spectroscopy and by laboratory analysis with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energ. Fuel. 20, 6, 2448-2456. [CrossRef] [Google Scholar]
- Neurock M.,Nigam A.,Trauth D.,Klein M.T. (1994) Molecular Representation of Complex Hydrocarbon Feedstocks through Efficient Characterization and Stochastic Algorithms, Chem. Eng. Sci. 49, 4153. [CrossRef] [Google Scholar]
- Phillips J.B.,Xu J.Z. (1995) Comprehensive multidimensional gas chromatography, J. Chromatogr. A 703, 1-2, 327-334. [CrossRef] [Google Scholar]
- Prickett S.E.,Mavrovouniotis M.L. (1997) Construction of Complex Reaction Systems, Comput. Chem. Eng. 21, 1219-1235. [Google Scholar]
- Quann R.J.,Jaffe S.B. (1996) Building Useful Models for Complex Reaction Systems in Petroleum Refining, Chem. Eng. Sci. 51, 1615. [CrossRef] [Google Scholar]
- Ranzi E.,Dente M.,Plerucci S.,Biardi G. (1983) Initial Product Distribution from Pyrolysis of Normal and Branched Paraffins, Ind. Eng. Chem. Fund. 22, 132-139. [CrossRef] [Google Scholar]
- Ranzi E.,Dente M.,Goldaniga A.,Bozzano G.,Faravelli T. (2001) Lumping procedures in Detailed Kinetic Modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Prog. Energ. Combust. 27, 99-139. [CrossRef] [Google Scholar]
- Ranzi E.,Faravelli T.,Gaffuri P.,Sogaro A. (1995) Low Temperature Combustion – Automatic-Generation of Oxidation Reactions and Lumping procedures, Combust. Flame 102, 179-192. [CrossRef] [Google Scholar]
- Reyniers M.F.,Froment G.F. (1995) Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons, Ind. Eng. Chem. Res. 34, 773-785. [CrossRef] [Google Scholar]
- Riazi M.R. (2005) Characterization and properties of petroleum fractions, ASTM International, West Conshohocken. [Google Scholar]
- Rice F.O. (1931) The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals, J. Am. Chem. Soc. 53, 1959. [CrossRef] [Google Scholar]
- Rice F.O.,Herzfeld K.F. (1934) The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radica1s. VI. The Mechanism of Some Chain Reactions, J. Am. Chem. Soc. 56, 284. [CrossRef] [Google Scholar]
- Saeys M. (2003) Ab initio Modelling as a Tool for the Sustainable Development of Chemical processes, PhD Dissertation, UGent. [Google Scholar]
- Saeys M.,Reyniers M.F.,Marin G.B., Van Speybroeck V.,Waroquier M. (2004) Ab initio group contribution method for activation energies for β scissions and radical additions, AIChE J. 50, 426-444. [CrossRef] [Google Scholar]
- Saeys M.,Reyniers M.F., Van Speybroeck V.,Waroquier M.,Marin G.B. (2006) Ab initio group contribution method for activation energies of hydrogen abstraction reactions, Chem. Phys. Chem. 7, 188-199. [CrossRef] [Google Scholar]
- Shannon C.E. (1948) A Mathematical Theory of Communications, Bell System Tech. J. 27, 379. [CrossRef] [MathSciNet] [Google Scholar]
- Singh J.,Kumar M.M.,Saxena A.K.,Kumar S. (2005) Reaction pathways and product yields in mild thermal cracking of vacuum residues: A multi-lump kinetic model, Chem. Eng. J. 108, 3, 239-248. [CrossRef] [Google Scholar]
- Trauth D.M. (1993) Structure of complex mixtures through characterization, reaction, and modeling, PhD Thesis, University of Delaware. [Google Scholar]
- Trauth D.M.,Stark S.M.,Petti T.F.,Neurock M.,Klein M.T. (1994) Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling, Energ. Fuel. 8, 3, 576-580. [Google Scholar]
- Van Geem K.M.,Reyniers M.F.,Marin G.B. (2005) Two Severity Indices for Scale-Up of Steam Cracking Coils, Ind. Eng. Chem. Res. 44, 3402-3411. [CrossRef] [Google Scholar]
- Van Geem K.M.,Reyniers M.F.,Marin G.B.,Song J.,Mattheu D.M.,Green W.H. (2006) Automatic Network generation using RMG for Steam Cracking of n-Hexane, AIChE J. 52, 2, 718-730. [CrossRef] [Google Scholar]
- Van Geem K.M.,Hudebine B.,Reyniers M.F.,Whal F.,Verstraete J.J.,Marin G.B. (2007) Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng. 31, 1020-1034. [CrossRef] [Google Scholar]
- Vendeuvre C.,Ruiz-Guerrero R.,Bertoncini F.,Duval L.,Thiebaut D. (2007) Comprehensive two- dimensional Gas chromatography for Detailed Characterisation of Petroleum products, Oil Gas Sci. Technol. 62, 1, 43-55. [CrossRef] [EDP Sciences] [Google Scholar]
- Verstraete J.J.,Revellin N.,Dulot H.,Hudebine D. (2004) Molecular Reconstruction of Vacuum Gas Oils, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49, 1, 20-21. [Google Scholar]
- Warth V.,Battin-Leclerc F.,Fournet R.,Glaude P.A.,Come G.M.,Scacchi G. (2000) Computer based generation of reaction mechanisms for gas-phase oxidation, Comput. Chem. 24, 541-560. [CrossRef] [PubMed] [Google Scholar]
- Wei J.,Kuo J.C.W. (1969) A Lumping Analysis in Monomolecular Reaction Systems – Analysis of the Exactly Lumpable System, Ind. Eng. Chem. Fund. 8, 114. [Google Scholar]
- Willems P.A.,Froment G.F. (1988) Kinetic modelling of the Thermal Cracking of Hydrocarbons. 1. Calculation of frequency factors, Ind. Eng. Chem. Res. 27, 1959-1966. [Google Scholar]
Numéro |
Oil & Gas Science and Technology - Rev. IFP
Volume 63, Numéro 1, January-February 2008
Dossier: Molecular Structures of Heavy Oils and Coal Liquefaction Products
|
|
---|---|---|
Page(s) | 79 - 94 | |
DOI | https://doi.org/10.2516/ogst:2007084 | |
Publié en ligne | 23 février 2008 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.