Dossier: Molecular Structures of Heavy Oils and Coal Liquefaction Products
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 63, Number 1, January-February 2008
Dossier: Molecular Structures of Heavy Oils and Coal Liquefaction Products
Page(s) 79 - 94
Published online 23 February 2008
  • Baltanas M.A.,Froment G.F. (1985) Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins, Comput. Chem. Eng. 9, 1, 71-81. [CrossRef] [Google Scholar]
  • Baltanas M.A., Van Raemdock K.K., Froment G.F., Mohedas S.R. 1989) Fundamental kinetic modeling of hydroisomerization and hydrocracking on Noble metal loaded faujasites -1. rate parameters for Hydroisomerization, Ind. Eng. Chem. Res. 28, 7, 899-910. [Google Scholar]
  • Beirnaert H.C.,Alleman J.R.,Marin G.B. (2001) A fundamental kinetic model for the catalytic cracking of alkanes on a USY zeolite in the presence of coke formation, Ind. Eng. Chem. Res. 40, 5, 1337-1347. [CrossRef] [Google Scholar]
  • Broadbelt L.J.,Stark S.M.,Klein M.T. (1994) Computer-generated Pyrolysis Modeling – on-the-fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res. 33, 790-799. [CrossRef] [Google Scholar]
  • Buda F.,Heyberger B.,Fournet R.,Glaude P.A.,Warth V.,Battin-Leclerc F. (2006) Modeling of the gas-phase oxidation of cyclohexane, Energ. Fuel. 20, 4, 1450-1459. [Google Scholar]
  • Chevalier C.,Warnatz J.,Melenk H. (1990) Automatic generation of Reaction-mechanism for the Oxidation of higher Hydrocarbons, Ber. Bunsen-Gesellsch. 94, 1362-1367. [CrossRef] [Google Scholar]
  • Chinnick S.J.,Baulch D.L.,Aysough P.B. (1988) An expert System for Hydrocarbon Pyrolysis, Chemometr. Intell. Lab. 5, 1, 39-52. [Google Scholar]
  • Dalluge J.,Beens J.,Brinkman U.A.T. (2003) Comprehensive twodimensional gas chromatography: a powerful and versatile analytical tool, J. Chromatogr. A 1000, 1-2, 69-108. [Google Scholar]
  • Dente M.,Ranzi E. (1979) Detailed Prediction of Olefin Yields from Hydrocarbon Pyrolysis through a Fundamental Simulation Program SPYRO, Comput. Chem. Eng. 3, 61. [CrossRef] [Google Scholar]
  • Dente M., Ranzi E., Bozzano G., Faravelli T., Valkenburg P.J.M. (2001) Heavy Component Description in the Kinetic Modelling of Hydrocarbon Pyrolysis, AIChE Spring National Meeting, Houston, TX, USA. [Google Scholar]
  • Dente M., Bozzano G., Faravelli T., Marongiu A., Ranzi E. (2007) Kinetic Modeling of Pyrolysis processes in Gas and Condensed Phase, Adv. Chem. Eng. 32, in press. [Google Scholar]
  • Dhuyvetter I.,Reyniers M.F.,Froment G.F.,Marin G.B. (2001) The Influence of Dimethyl Disulfide on Naphtha Steam Cracking, Ind. Eng. Chem. Res. 40, 4353-4362. [CrossRef] [Google Scholar]
  • Dietz W.A. (1967) Response Factors for Gas Chromatographic Analyses, J. Gas Chromatogr. 5, 68. [CrossRef] [Google Scholar]
  • Dierickx J.L.,Plehiers P.M.,Froment G.F. (1986) Online Gas-Chromatographic Analysis of Hydrocarbon Effluents – Calibration Factors and their Correlation, J. Chromatogr. 362, 155. [CrossRef] [Google Scholar]
  • DiMaio F.P.,Lignola P.G. (1992) KING, a Kinetic Network Generator, Chem. Eng. Sci. 47, 2713. [CrossRef] [Google Scholar]
  • Fedors R. (1974) A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids, Polym. Eng. Sci. 14, 147. [CrossRef] [Google Scholar]
  • Feng W.,Vynckier E.,Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [CrossRef] [Google Scholar]
  • Floudas C.A., Pardalos P.M. (1996) State of the art in global optimization: Computational methods and Applications, Kluwer, New York. [Google Scholar]
  • Froment G.F. (1992) Kinetics and Reactor Design in the Thermal Cracking for Olefin Production, Chem. Eng. Sci. 47, 2163. [CrossRef] [Google Scholar]
  • Guiasu S.,Shenitzer A. (1985) The principle of maximum entropy, Math. Intell. 7, 42-48. [CrossRef] [Google Scholar]
  • Guillaume D.,Surla K.,Galtier P. (2003) From single events theory to molecular kinetics - application to industrial process modeling, Chem. Eng. Sci. 21, 4861-4869. [Google Scholar]
  • Hillewaert L.P.,Dierickx J.L.,Froment G.F. (1988) Computer-Generation of Reaction Schemes and Rate-Equations for Thermal-Cracking, AIChE J. 34, 17-25. [CrossRef] [Google Scholar]
  • Hudebine D. (2003) Reconstruction Moléculaire de Coupes Pétrolières, PhD Thesis, École Normale Supérieure de Lyon. [Google Scholar]
  • Hudebine D., Vera C., Wahl F., Verstraete J.J. (2002) Molecular Representation of Hydrocarbon Mixtures from Overall Petroleum Analyses. AIChE 2002 Spring Meeting, New Orleans, LA, March, 10-14, Paper 27a. [Google Scholar]
  • Hudebine D.,Verstraete J.J. (2004) Molecular Reconstruction of LCO Gasoils from overall Petroleum Analyses, Chem. Eng. Sci. 59, 4755-4763. [CrossRef] [Google Scholar]
  • Hughey C.A.,Rodgers R.P.,Marshall A.G. (2002) Resolution of 11 000 compositionally distinct components in a single Electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil, Anal. Chem. 74, 16, 4145-4149. [CrossRef] [PubMed] [Google Scholar]
  • Joo E.,Park S.,Lee M. (2001) Pyrolysis Reaction Mechanism for Industrial Naphtha Cracking Furnaces, Ind. Eng. Chem. Res. 40, 2409-2415. [CrossRef] [Google Scholar]
  • Kapur J.N., Kesavan H.K. (1992) Entropy Optimization Principles with Applications, Academic Press, San Diego. [Google Scholar]
  • Kuo J.C.W.,Wei J. (1969) A Lumping Analysis in Monomolecular Reaction Systems – Analysis of Approximately Lumpable System, Ind. Eng. Chem. Fund. 8, 124. [CrossRef] [Google Scholar]
  • Li S., Petzold L.R. (1999) Design of New DASPK for Sensitivity Analysis, UCSB Technical report. [Google Scholar]
  • Liguras D.K.,Allen D.T. (1989a) Structural Models for Catalytic Cracking. 1. Model Compound Reactions, Ind. Eng. Chem. Res. 28, 665. [Google Scholar]
  • Liguras D.K.,Allen D.T. (1989b) Structural Models for Catalytic Cracking. 2. Reactions of Simulated Oil Mixtures, Ind. Eng. Chem. Res. 28, 674. [CrossRef] [Google Scholar]
  • Lozano-Blanco G.,Thybaut J.W.,Surla K.,Galtier P.,Marin G.B. (2006) Fischer-Tropsch synthesis: Development of a microkinetic model for metal catalysis, Oil Gas Sci. Technol. 61, 4, 489-496. [Google Scholar]
  • Marrero M.J.,Pardillo F.E.,Fernandez B.S. (1999) Estimation of Hydrocarbon Properties from Group-Interaction Contributions, Chem. Eng. Commun. 176, 161. [CrossRef] [Google Scholar]
  • Martens G.G.,Thybaut J.W.,Marin G.B. (2001) Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res. 40, 8, 1832-1844. [CrossRef] [Google Scholar]
  • Matheu D.M.,Dean A.M.,Grenda J.M.,Green W.H. (2003) Mechanism Generation with Integrated Pressure dependence: A New Model for Methane Pyrolysis, J. Phys. Chem. A 107, 8552-8565. [Google Scholar]
  • Merdrignac I.,Espinat D. (2007) Physicochemical characterization of petroleum fractions: the State of the Art, Oil Gas Sci. Technol. 62, 1, 7-32. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mullins O.C.,Rodgers R.P.,Weinheber P.,Klein G.C.,Venkataramanan L.,Andrews A.B.,Marshall A.G. (2006) Oil reservoir characterization via crude oil analysis by downhole fluid analysis in oil wells with visible-near-infrared spectroscopy and by laboratory analysis with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energ. Fuel. 20, 6, 2448-2456. [CrossRef] [Google Scholar]
  • Neurock M.,Nigam A.,Trauth D.,Klein M.T. (1994) Molecular Representation of Complex Hydrocarbon Feedstocks through Efficient Characterization and Stochastic Algorithms, Chem. Eng. Sci. 49, 4153. [CrossRef] [Google Scholar]
  • Phillips J.B.,Xu J.Z. (1995) Comprehensive multidimensional gas chromatography, J. Chromatogr. A 703, 1-2, 327-334. [CrossRef] [Google Scholar]
  • Prickett S.E.,Mavrovouniotis M.L. (1997) Construction of Complex Reaction Systems, Comput. Chem. Eng. 21, 1219-1235. [Google Scholar]
  • Quann R.J.,Jaffe S.B. (1996) Building Useful Models for Complex Reaction Systems in Petroleum Refining, Chem. Eng. Sci. 51, 1615. [CrossRef] [Google Scholar]
  • Ranzi E.,Dente M.,Plerucci S.,Biardi G. (1983) Initial Product Distribution from Pyrolysis of Normal and Branched Paraffins, Ind. Eng. Chem. Fund. 22, 132-139. [CrossRef] [Google Scholar]
  • Ranzi E.,Dente M.,Goldaniga A.,Bozzano G.,Faravelli T. (2001) Lumping procedures in Detailed Kinetic Modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Prog. Energ. Combust. 27, 99-139. [CrossRef] [Google Scholar]
  • Ranzi E.,Faravelli T.,Gaffuri P.,Sogaro A. (1995) Low Temperature Combustion – Automatic-Generation of Oxidation Reactions and Lumping procedures, Combust. Flame 102, 179-192. [CrossRef] [Google Scholar]
  • Reyniers M.F.,Froment G.F. (1995) Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons, Ind. Eng. Chem. Res. 34, 773-785. [CrossRef] [Google Scholar]
  • Riazi M.R. (2005) Characterization and properties of petroleum fractions, ASTM International, West Conshohocken. [Google Scholar]
  • Rice F.O. (1931) The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals, J. Am. Chem. Soc. 53, 1959. [CrossRef] [Google Scholar]
  • Rice F.O.,Herzfeld K.F. (1934) The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radica1s. VI. The Mechanism of Some Chain Reactions, J. Am. Chem. Soc. 56, 284. [CrossRef] [Google Scholar]
  • Saeys M. (2003) Ab initio Modelling as a Tool for the Sustainable Development of Chemical processes, PhD Dissertation, UGent. [Google Scholar]
  • Saeys M.,Reyniers M.F.,Marin G.B., Van Speybroeck V.,Waroquier M. (2004) Ab initio group contribution method for activation energies for β scissions and radical additions, AIChE J. 50, 426-444. [CrossRef] [Google Scholar]
  • Saeys M.,Reyniers M.F., Van Speybroeck V.,Waroquier M.,Marin G.B. (2006) Ab initio group contribution method for activation energies of hydrogen abstraction reactions, Chem. Phys. Chem. 7, 188-199. [CrossRef] [Google Scholar]
  • Shannon C.E. (1948) A Mathematical Theory of Communications, Bell System Tech. J. 27, 379. [CrossRef] [MathSciNet] [Google Scholar]
  • Singh J.,Kumar M.M.,Saxena A.K.,Kumar S. (2005) Reaction pathways and product yields in mild thermal cracking of vacuum residues: A multi-lump kinetic model, Chem. Eng. J. 108, 3, 239-248. [CrossRef] [Google Scholar]
  • Trauth D.M. (1993) Structure of complex mixtures through characterization, reaction, and modeling, PhD Thesis, University of Delaware. [Google Scholar]
  • Trauth D.M.,Stark S.M.,Petti T.F.,Neurock M.,Klein M.T. (1994) Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling, Energ. Fuel. 8, 3, 576-580. [Google Scholar]
  • Van Geem K.M.,Reyniers M.F.,Marin G.B. (2005) Two Severity Indices for Scale-Up of Steam Cracking Coils, Ind. Eng. Chem. Res. 44, 3402-3411. [CrossRef] [Google Scholar]
  • Van Geem K.M.,Reyniers M.F.,Marin G.B.,Song J.,Mattheu D.M.,Green W.H. (2006) Automatic Network generation using RMG for Steam Cracking of n-Hexane, AIChE J. 52, 2, 718-730. [CrossRef] [Google Scholar]
  • Van Geem K.M.,Hudebine B.,Reyniers M.F.,Whal F.,Verstraete J.J.,Marin G.B. (2007) Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng. 31, 1020-1034. [CrossRef] [Google Scholar]
  • Vendeuvre C.,Ruiz-Guerrero R.,Bertoncini F.,Duval L.,Thiebaut D. (2007) Comprehensive two- dimensional Gas chromatography for Detailed Characterisation of Petroleum products, Oil Gas Sci. Technol. 62, 1, 43-55. [CrossRef] [EDP Sciences] [Google Scholar]
  • Verstraete J.J.,Revellin N.,Dulot H.,Hudebine D. (2004) Molecular Reconstruction of Vacuum Gas Oils, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49, 1, 20-21. [Google Scholar]
  • Warth V.,Battin-Leclerc F.,Fournet R.,Glaude P.A.,Come G.M.,Scacchi G. (2000) Computer based generation of reaction mechanisms for gas-phase oxidation, Comput. Chem. 24, 541-560. [CrossRef] [PubMed] [Google Scholar]
  • Wei J.,Kuo J.C.W. (1969) A Lumping Analysis in Monomolecular Reaction Systems – Analysis of the Exactly Lumpable System, Ind. Eng. Chem. Fund. 8, 114. [Google Scholar]
  • Willems P.A.,Froment G.F. (1988) Kinetic modelling of the Thermal Cracking of Hydrocarbons. 1. Calculation of frequency factors, Ind. Eng. Chem. Res. 27, 1959-1966. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.