Dossier: Special Issue in Honour of Yves Chauvin, Nobel Prize in Chemistry, 2007
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Numéro 6, November-December 2007
Dossier: Special Issue in Honour of Yves Chauvin, Nobel Prize in Chemistry, 2007
Page(s) 731 - 738
DOI https://doi.org/10.2516/ogst:2007051
Publié en ligne 30 octobre 2007
  • Bredig, G. and Fiske, P.S. (1913) Asymmetric synthesis caused by catalyts. Biochem. Z., 46, 7-23. [Google Scholar]
  • For history of asymmetric catalysis see: Kagan, H.B. (1999) Historical perspective, in Comprehensive Asymmetric Catalysis, Jacobsen, E.N., Pfaltz, A. and Yamamoto, H. (eds.), Springer-Verlag, Berlin, Vol. 1, pp. 9-30. [Google Scholar]
  • Natta, G.,Farina, M.,Peraldo, M. and Bressan, G. (1961) Asymmetric synthesis of optically active di-isotactic polymers from cyclic monomers. Makromol. Chem., 43, 68-75. [Google Scholar]
  • Nozaki, H.,Moriuti, S.,Takaya, H. and Noyori, R. (1966) Asymmetric induction in carbenoid reactions by means of a dissymmetric copper chelate. Tetrahedron Lett., 22, 5239-5244. [CrossRef] [Google Scholar]
  • Knowles, W.S. and Sabacky, M.J. (1968) Asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun., 1445-1446. [Google Scholar]
  • Horner, L,Siegel, H. and Büthe, H. (1968) Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogeneous solution. Angew. Chem. Int. Edit. Engl., 7, 942. [CrossRef] [Google Scholar]
  • Dang, T.P. and Kagan, H.B. (1971) The asymmetric synthesis of hydratropic acid and amino acids by homogeneous catalytic hydrogenation. Chem. Commun., 481. [Google Scholar]
  • Kagan, H.B. and Dang, T.P. (1972) Asymmetric catalytic reduction with transition metal complexes. -I. A catalytic system of rhodium(I) with (-)-2,3-O-isopropylidene-2,3-dihydroxy 1,4-(diphenylphosphino)butane, a new chiral diphosphine. J. Am. Chem. Soc., 94, 6429-6433. [CrossRef] [Google Scholar]
  • Kagan, H.B. (1975) Asymmetric catalysis by chiral rhodium complexes in hydrogenation and hydrosilylation reactions. Pure Appl. Chem., 43, 401-421. [CrossRef] [Google Scholar]
  • Dang, T.P. and Kagan, H.B. (1970) Bidentate coordinates, their manufacture and application, Patent IFP, France, Dec. 10, 1970, US, Dec. 7, 1971, Ser. No. 205, 744. [Google Scholar]
  • Knowles, W.S.,Sabacky, M.,Vineyard, B.D. and Weinkauff, D.J. (1975) Asymmetric hydrogenation with a complex of rhodium and a chiral biphosphine. J. Am. Chem. Soc., 97, 2967-2968. [CrossRef] [Google Scholar]
  • Fryzuk, M.D. and Bosnich, B. (1977) Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation. J. Am. Chem. Soc., 99, 6262-6267. [CrossRef] [PubMed] [Google Scholar]
  • Grubbs, R.H. and DeVries, R.A. (1977) Asymmetric hydrogenation by an atropoisomeric diphosphinite rhodium complex. Tetrahedron Lett., 18, 1879-1880. [CrossRef] [Google Scholar]
  • Miyashita, A.,Yasuda, A.,Takaya, H.,Toriumi, K.,Ito, T.,Souji, T. and Noyori, R. (1980) Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-bis-naphthyl (BINAP), an atropoi-someric chiral bis(triaryl)phosphine and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of Formula -aminoacrylic acids. J. Am. Chem. Soc., 102, 7932-7934. [CrossRef] [Google Scholar]
  • Lagasse, F. and Kagan, H.B. (2000) Chiral monophosphines as ligands for asymmetric catalysis. Chem. Pharm. Bull., 48, 315-324. [CrossRef] [Google Scholar]
  • Reetz, M. and Mehler, G. (2000) Highly enantioselective Rh-catalyzed hydrogenation reactions based on chiral monophosphite ligands. Angew. Chem. Int. Edit., 39, 3889-3890. [CrossRef] [Google Scholar]
  • Van der Berg, M., Minnaard, A.J., Schudde, E.P., van Esch J., de Vries, A.H.M., deVries, J.G. and Feringa, B.L. (2000) Highly enantioselective rhodium-catalyzed hydrogenation with monodentate ligands. J. Am. Chem. Soc., 122, 11539-11540. [CrossRef] [Google Scholar]
  • Kagan, H.B. and Fenwick, D.R. (1999) Asymmetric amplifica-tion. Topics Stereochem., Denmark, S. Ed., 22, 257-296. [Google Scholar]
  • Izumi, Y. and Tai, A. (1977) Stereo-Differentiating Reactions, Academic Press, New York, pp. 242-245. [Google Scholar]
  • Puchot, C.,Samuel, O.,Dunach, E.,Zhao, S.,Agami, C. and Kagan, H.B. (1986) Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidation and aldolization reactions. J. Am. Chem. Soc., 108, 2353-2357. [CrossRef] [PubMed] [Google Scholar]
  • Oguni, N.,Matsuda, Y. and Kaneko, T. (1988) Asymmetric amplifying phenomena in enantioselective addition of diethylzinc to benzadehyde. J. Am. Chem. Soc., 110, 7877-7878. [CrossRef] [Google Scholar]
  • Guillaneux, D.,Zhao, S.H.,Samuel, O.,Rainford, D. and Kagan, H.B. (1994) Nonlinear effects in asymmetric catalysis. J. Am. Chem. Soc., 116, 9430-9439. [CrossRef] [Google Scholar]
  • Hoang, L.,Bahmanayar, S.,Houk, K.N. and List, B. (2003) Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition state of praline catalyzed intra- and intermolecular aldol reactions. J. Am. Chem. Soc., 125, 16-17. [CrossRef] [PubMed] [Google Scholar]
  • Mathew, S.P.,Iwamura, H. and Blackmond, D.G. (2006) Amplification of enantiomeric excess in a proline-mediated reaction. Angew. Chem. Int. Edit., 43, 3317-3321. [CrossRef] [Google Scholar]
  • Girard, C. and Kagan, H.B. (1998) Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew. Chem. Int. Edit. Engl., 37, 2922-2959. [Google Scholar]
  • Kagan, H.B. (2001) Nonlinear effects in asymmetric catalysis: a personal account. Synlett, 888-900. [Google Scholar]
  • Kagan, H.B. (2001) Practical consequences of nonlinear effects in asymmetric synthesis. Adv. Synth. Catal., 343, 227-233. [CrossRef] [Google Scholar]
  • Avalos, M.,Babiano, R.,Cintas, P.,Jiménez, J.L. and Palacios, J.C. (1997) Nonlinear stereochemical effects in asymmetric reactions. Tetrahedron-Asymmetr., 8, 2997-3017. [CrossRef] [Google Scholar]
  • Soai, K.,Shibata, T. and Sato, I. (2000) Enantioselective auto-multiplication of chiral molecules by asymmetric catalysis. Accounts Chem. Res., 33, 382-390. [CrossRef] [Google Scholar]
  • Kagan, H.B. and Luukas, T.O. (1999) Nonlinear effects and autocatalysis, in Comprehensive Asymmetric Catalysis, Jacobsen, E.N., Pfaltz, A and Yamamoto, H. (eds.), Springer-Verlag, Berlin, Vol. 1, pp. 101-118. [Google Scholar]
  • Alberts, AH. and Wynberg, H. (1989) The role of the product in asymmetric C-C bond formation: stoichiometric and catalytic enatioselective autoinduction. J. Am. Chem. Soc., 111, 7265-7266. [CrossRef] [Google Scholar]
  • (a) Bolm, C.,Bienewald, F. and Seger, A. (1996) Asymmetric autocatalysis with amplification of chirality. Angew. Chem. Int. Edit. Engl., 35, 2922-2959 and references quoted therein. (b) Costa, A.M, Garcia, C., Caroll, P.J. and Walsh, P.J. (2005) Dramatic catalyst evolution in the asymmetric addition of diethylzinc to benzaldehyde. Tetrahedron, 61, 6442-6446 and references quoted therein. [Google Scholar]
  • Blackmond, D.G. (1997) Mathematical models of nonlinear effects in asymmetric catalysis: new insights based on the role of reaction rate. J. Am. Chem. Soc., 119, 12934-12939. [CrossRef] [Google Scholar]
  • Kitamura, M.,Okada, S.,Suga, S. and Noyori, R. (1989) Enantioselective addition of dialkylzincs to aldehydes promoted by chiral amino alcohols. Mechanism and nonlinear effect. J. Am. Chem. Soc., 111, 4028-4036. [CrossRef] [Google Scholar]
  • Noyori, R. and Kitamura, L. (1991) Enantioselective addition of organometallic reagents to carbonyl compounds: chirality transfer, multiplication, and amplification. Angew. Chem. Int. Edit., 30, 49-69. [CrossRef] [Google Scholar]
  • Mikami, K.,Motoyama, Y. and Terada, M. (1994) Asymmetric catalysis of Diels-Alder cycloadditions by an MS-free binaphthol-titanium complex: dramatic effect of MS, linear vs. positive nonlinear relationship, and synthetic applications. J. Am. Chem. Soc., 116, 2912-2820. [Google Scholar]
  • Iwasawa, N., Hayashi, Y., Sakurai, H. and Narasaka, K. (1989) Characterization of the chiral titanium reagent prepared from the tartrate-derived chiral diol and titanium dichloride diisopropoxide. Chem. Lett., 1581-1584. [Google Scholar]
  • Kanemasa, S.,Oderaotoshi, Y.,Sakakguchi, S.,Yamamoto, H.,Tanaka, J.,Wada, E. and Curran, D.P. (1998) Transition-metal aqua complexes of 4,6-dibenzofurandiyl-2,2'-bis(4-phenyloxa-zoline). Effective catalysis in Diels-Alder reactions showing excellent enantioselectivity, extreme chiral amplification and high tolerance to water, alcohols, amines and acids. J. Am. Chem. Soc., 120, 3074-3088. [CrossRef] [Google Scholar]
  • Kina, A.,Iwamura, H. and Hayashi, T. (2006) A kinetic study on Rh/Binap-catalyzed 1,4-addition of phenylboronic acid to enones: negative nonlinear effect caused by predominant homochiral dimer contribution. J. Am. Chem. Soc., 128, 3904-3905. [CrossRef] [PubMed] [Google Scholar]
  • Yamagiwa N.,Qin H.,Matsunaga S. and Shibasaki M. (2005) Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction. J. Am. Chem. Soc., 127, 13419-13427. [CrossRef] [PubMed] [Google Scholar]
  • Terada, M., Mikami, K. and Nakai, T. (1990) Asymmetric catalysis for carbonyl-ene reaction. Synlett, 255-264. [Google Scholar]
  • Girard, C.,Genet, J.-P. and Buillard, M. (1999) Non-linear effects in ruthenium-catalyzed asymmetric hydrogenation with atropisomeric diphosphanes. Eur. J. Org. Chem., 11, 2937-2942. [CrossRef] [Google Scholar]
  • Reetz, M.T.,Meiswenkel, A.,Mehler, G.,Angermund, K.,Graf, M.,Thiel, W.,Mynott, R. and Blackmond, D.G. (2005) Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation? J. Am. Chem. Soc., 127, 10305-10313. [CrossRef] [PubMed] [Google Scholar]
  • Brunel, J.-M.,Luukas, T.O. and Kagan, H.B. (1998) Nonlinear effects as `indicators' in the tuning of asymmetric catalysts. Tetrahedron-Asymmetr., 9, 1941-1946. [CrossRef] [Google Scholar]
  • Hansen, K.B,Leighton, J.L. and Jacobsen, E.N. (1996) On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (Salen)CrIII complexes. J. Am. Chem. Soc., 118, 10924-10925. [CrossRef] [Google Scholar]
  • Vigneron, J.-P.,Dhaenens, M. and Horeau, A. (1973) Nouvelle méthode pour porter au maximum la pureté optique d'un produit partiellement dédoublé sans l'aide d'aucune substance chirale. Tetrahedron, 29, 1055-1059. [CrossRef] [Google Scholar]
  • (a) Langenbeck, W. and Triem, G. (1936) Theories of the origin and maintenance of optical activity in nature. Z. Phys. Chem. A, 177, 401-409. [Google Scholar]
  • (b) Heller, D.,Drexler, H.-J.,Fischer, C.,Buschmann, H.,Baumann, W. and Heller, B. (2000) How long have nonlinear effects been known in the field of catalists. Angew. Chem. Int. Edit., 39, 495-499. [CrossRef] [Google Scholar]
  • Buschmann, H.,Thede, R. and Heller, D. (2000) New developments in the origin of the homochirality of biologically relevant molecules. Angew. Chem. Int. Edit., 39, 4033-4036. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.