Dossier: Special Issue in Honour of Yves Chauvin, Nobel Prize in Chemistry, 2007
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Number 6, November-December 2007
Dossier: Special Issue in Honour of Yves Chauvin, Nobel Prize in Chemistry, 2007
Page(s) 731 - 738
DOI https://doi.org/10.2516/ogst:2007051
Published online 30 October 2007
  • Bredig, G. and Fiske, P.S. (1913) Asymmetric synthesis caused by catalyts. Biochem. Z., 46, 7-23. [Google Scholar]
  • For history of asymmetric catalysis see: Kagan, H.B. (1999) Historical perspective, in Comprehensive Asymmetric Catalysis, Jacobsen, E.N., Pfaltz, A. and Yamamoto, H. (eds.), Springer-Verlag, Berlin, Vol. 1, pp. 9-30. [Google Scholar]
  • Natta, G.,Farina, M.,Peraldo, M. and Bressan, G. (1961) Asymmetric synthesis of optically active di-isotactic polymers from cyclic monomers. Makromol. Chem., 43, 68-75. [Google Scholar]
  • Nozaki, H.,Moriuti, S.,Takaya, H. and Noyori, R. (1966) Asymmetric induction in carbenoid reactions by means of a dissymmetric copper chelate. Tetrahedron Lett., 22, 5239-5244. [CrossRef] [Google Scholar]
  • Knowles, W.S. and Sabacky, M.J. (1968) Asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun., 1445-1446. [Google Scholar]
  • Horner, L,Siegel, H. and Büthe, H. (1968) Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogeneous solution. Angew. Chem. Int. Edit. Engl., 7, 942. [CrossRef] [Google Scholar]
  • Dang, T.P. and Kagan, H.B. (1971) The asymmetric synthesis of hydratropic acid and amino acids by homogeneous catalytic hydrogenation. Chem. Commun., 481. [Google Scholar]
  • Kagan, H.B. and Dang, T.P. (1972) Asymmetric catalytic reduction with transition metal complexes. -I. A catalytic system of rhodium(I) with (-)-2,3-O-isopropylidene-2,3-dihydroxy 1,4-(diphenylphosphino)butane, a new chiral diphosphine. J. Am. Chem. Soc., 94, 6429-6433. [CrossRef] [Google Scholar]
  • Kagan, H.B. (1975) Asymmetric catalysis by chiral rhodium complexes in hydrogenation and hydrosilylation reactions. Pure Appl. Chem., 43, 401-421. [CrossRef] [Google Scholar]
  • Dang, T.P. and Kagan, H.B. (1970) Bidentate coordinates, their manufacture and application, Patent IFP, France, Dec. 10, 1970, US, Dec. 7, 1971, Ser. No. 205, 744. [Google Scholar]
  • Knowles, W.S.,Sabacky, M.,Vineyard, B.D. and Weinkauff, D.J. (1975) Asymmetric hydrogenation with a complex of rhodium and a chiral biphosphine. J. Am. Chem. Soc., 97, 2967-2968. [CrossRef] [Google Scholar]
  • Fryzuk, M.D. and Bosnich, B. (1977) Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation. J. Am. Chem. Soc., 99, 6262-6267. [CrossRef] [PubMed] [Google Scholar]
  • Grubbs, R.H. and DeVries, R.A. (1977) Asymmetric hydrogenation by an atropoisomeric diphosphinite rhodium complex. Tetrahedron Lett., 18, 1879-1880. [CrossRef] [Google Scholar]
  • Miyashita, A.,Yasuda, A.,Takaya, H.,Toriumi, K.,Ito, T.,Souji, T. and Noyori, R. (1980) Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-bis-naphthyl (BINAP), an atropoi-someric chiral bis(triaryl)phosphine and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of Formula -aminoacrylic acids. J. Am. Chem. Soc., 102, 7932-7934. [CrossRef] [Google Scholar]
  • Lagasse, F. and Kagan, H.B. (2000) Chiral monophosphines as ligands for asymmetric catalysis. Chem. Pharm. Bull., 48, 315-324. [CrossRef] [Google Scholar]
  • Reetz, M. and Mehler, G. (2000) Highly enantioselective Rh-catalyzed hydrogenation reactions based on chiral monophosphite ligands. Angew. Chem. Int. Edit., 39, 3889-3890. [CrossRef] [Google Scholar]
  • Van der Berg, M., Minnaard, A.J., Schudde, E.P., van Esch J., de Vries, A.H.M., deVries, J.G. and Feringa, B.L. (2000) Highly enantioselective rhodium-catalyzed hydrogenation with monodentate ligands. J. Am. Chem. Soc., 122, 11539-11540. [CrossRef] [Google Scholar]
  • Kagan, H.B. and Fenwick, D.R. (1999) Asymmetric amplifica-tion. Topics Stereochem., Denmark, S. Ed., 22, 257-296. [Google Scholar]
  • Izumi, Y. and Tai, A. (1977) Stereo-Differentiating Reactions, Academic Press, New York, pp. 242-245. [Google Scholar]
  • Puchot, C.,Samuel, O.,Dunach, E.,Zhao, S.,Agami, C. and Kagan, H.B. (1986) Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidation and aldolization reactions. J. Am. Chem. Soc., 108, 2353-2357. [CrossRef] [PubMed] [Google Scholar]
  • Oguni, N.,Matsuda, Y. and Kaneko, T. (1988) Asymmetric amplifying phenomena in enantioselective addition of diethylzinc to benzadehyde. J. Am. Chem. Soc., 110, 7877-7878. [CrossRef] [Google Scholar]
  • Guillaneux, D.,Zhao, S.H.,Samuel, O.,Rainford, D. and Kagan, H.B. (1994) Nonlinear effects in asymmetric catalysis. J. Am. Chem. Soc., 116, 9430-9439. [CrossRef] [Google Scholar]
  • Hoang, L.,Bahmanayar, S.,Houk, K.N. and List, B. (2003) Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition state of praline catalyzed intra- and intermolecular aldol reactions. J. Am. Chem. Soc., 125, 16-17. [CrossRef] [PubMed] [Google Scholar]
  • Mathew, S.P.,Iwamura, H. and Blackmond, D.G. (2006) Amplification of enantiomeric excess in a proline-mediated reaction. Angew. Chem. Int. Edit., 43, 3317-3321. [CrossRef] [Google Scholar]
  • Girard, C. and Kagan, H.B. (1998) Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew. Chem. Int. Edit. Engl., 37, 2922-2959. [Google Scholar]
  • Kagan, H.B. (2001) Nonlinear effects in asymmetric catalysis: a personal account. Synlett, 888-900. [Google Scholar]
  • Kagan, H.B. (2001) Practical consequences of nonlinear effects in asymmetric synthesis. Adv. Synth. Catal., 343, 227-233. [CrossRef] [Google Scholar]
  • Avalos, M.,Babiano, R.,Cintas, P.,Jiménez, J.L. and Palacios, J.C. (1997) Nonlinear stereochemical effects in asymmetric reactions. Tetrahedron-Asymmetr., 8, 2997-3017. [CrossRef] [Google Scholar]
  • Soai, K.,Shibata, T. and Sato, I. (2000) Enantioselective auto-multiplication of chiral molecules by asymmetric catalysis. Accounts Chem. Res., 33, 382-390. [CrossRef] [Google Scholar]
  • Kagan, H.B. and Luukas, T.O. (1999) Nonlinear effects and autocatalysis, in Comprehensive Asymmetric Catalysis, Jacobsen, E.N., Pfaltz, A and Yamamoto, H. (eds.), Springer-Verlag, Berlin, Vol. 1, pp. 101-118. [Google Scholar]
  • Alberts, AH. and Wynberg, H. (1989) The role of the product in asymmetric C-C bond formation: stoichiometric and catalytic enatioselective autoinduction. J. Am. Chem. Soc., 111, 7265-7266. [CrossRef] [Google Scholar]
  • (a) Bolm, C.,Bienewald, F. and Seger, A. (1996) Asymmetric autocatalysis with amplification of chirality. Angew. Chem. Int. Edit. Engl., 35, 2922-2959 and references quoted therein. (b) Costa, A.M, Garcia, C., Caroll, P.J. and Walsh, P.J. (2005) Dramatic catalyst evolution in the asymmetric addition of diethylzinc to benzaldehyde. Tetrahedron, 61, 6442-6446 and references quoted therein. [Google Scholar]
  • Blackmond, D.G. (1997) Mathematical models of nonlinear effects in asymmetric catalysis: new insights based on the role of reaction rate. J. Am. Chem. Soc., 119, 12934-12939. [CrossRef] [Google Scholar]
  • Kitamura, M.,Okada, S.,Suga, S. and Noyori, R. (1989) Enantioselective addition of dialkylzincs to aldehydes promoted by chiral amino alcohols. Mechanism and nonlinear effect. J. Am. Chem. Soc., 111, 4028-4036. [CrossRef] [Google Scholar]
  • Noyori, R. and Kitamura, L. (1991) Enantioselective addition of organometallic reagents to carbonyl compounds: chirality transfer, multiplication, and amplification. Angew. Chem. Int. Edit., 30, 49-69. [CrossRef] [Google Scholar]
  • Mikami, K.,Motoyama, Y. and Terada, M. (1994) Asymmetric catalysis of Diels-Alder cycloadditions by an MS-free binaphthol-titanium complex: dramatic effect of MS, linear vs. positive nonlinear relationship, and synthetic applications. J. Am. Chem. Soc., 116, 2912-2820. [Google Scholar]
  • Iwasawa, N., Hayashi, Y., Sakurai, H. and Narasaka, K. (1989) Characterization of the chiral titanium reagent prepared from the tartrate-derived chiral diol and titanium dichloride diisopropoxide. Chem. Lett., 1581-1584. [Google Scholar]
  • Kanemasa, S.,Oderaotoshi, Y.,Sakakguchi, S.,Yamamoto, H.,Tanaka, J.,Wada, E. and Curran, D.P. (1998) Transition-metal aqua complexes of 4,6-dibenzofurandiyl-2,2'-bis(4-phenyloxa-zoline). Effective catalysis in Diels-Alder reactions showing excellent enantioselectivity, extreme chiral amplification and high tolerance to water, alcohols, amines and acids. J. Am. Chem. Soc., 120, 3074-3088. [CrossRef] [Google Scholar]
  • Kina, A.,Iwamura, H. and Hayashi, T. (2006) A kinetic study on Rh/Binap-catalyzed 1,4-addition of phenylboronic acid to enones: negative nonlinear effect caused by predominant homochiral dimer contribution. J. Am. Chem. Soc., 128, 3904-3905. [CrossRef] [PubMed] [Google Scholar]
  • Yamagiwa N.,Qin H.,Matsunaga S. and Shibasaki M. (2005) Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction. J. Am. Chem. Soc., 127, 13419-13427. [CrossRef] [PubMed] [Google Scholar]
  • Terada, M., Mikami, K. and Nakai, T. (1990) Asymmetric catalysis for carbonyl-ene reaction. Synlett, 255-264. [Google Scholar]
  • Girard, C.,Genet, J.-P. and Buillard, M. (1999) Non-linear effects in ruthenium-catalyzed asymmetric hydrogenation with atropisomeric diphosphanes. Eur. J. Org. Chem., 11, 2937-2942. [CrossRef] [Google Scholar]
  • Reetz, M.T.,Meiswenkel, A.,Mehler, G.,Angermund, K.,Graf, M.,Thiel, W.,Mynott, R. and Blackmond, D.G. (2005) Why are BINOL-based monophosphites such efficient ligands in Rh-catalyzed asymmetric olefin hydrogenation? J. Am. Chem. Soc., 127, 10305-10313. [CrossRef] [PubMed] [Google Scholar]
  • Brunel, J.-M.,Luukas, T.O. and Kagan, H.B. (1998) Nonlinear effects as `indicators' in the tuning of asymmetric catalysts. Tetrahedron-Asymmetr., 9, 1941-1946. [CrossRef] [Google Scholar]
  • Hansen, K.B,Leighton, J.L. and Jacobsen, E.N. (1996) On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (Salen)CrIII complexes. J. Am. Chem. Soc., 118, 10924-10925. [CrossRef] [Google Scholar]
  • Vigneron, J.-P.,Dhaenens, M. and Horeau, A. (1973) Nouvelle méthode pour porter au maximum la pureté optique d'un produit partiellement dédoublé sans l'aide d'aucune substance chirale. Tetrahedron, 29, 1055-1059. [CrossRef] [Google Scholar]
  • (a) Langenbeck, W. and Triem, G. (1936) Theories of the origin and maintenance of optical activity in nature. Z. Phys. Chem. A, 177, 401-409. [Google Scholar]
  • (b) Heller, D.,Drexler, H.-J.,Fischer, C.,Buschmann, H.,Baumann, W. and Heller, B. (2000) How long have nonlinear effects been known in the field of catalists. Angew. Chem. Int. Edit., 39, 495-499. [CrossRef] [Google Scholar]
  • Buschmann, H.,Thede, R. and Heller, D. (2000) New developments in the origin of the homochirality of biologically relevant molecules. Angew. Chem. Int. Edit., 39, 4033-4036. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.