Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 515 - 525
Publié en ligne 1 janvier 2007
  • Sabatier, P. (1911) Hydrogénations et Déshydrogénations par Catalyse. Berichte Deut. Chem. Gesellschaft 44, 2001. [Google Scholar]
  • Balandin, A.A. (1958) The Nature of Active Centers and the Kinetics of Catalytic Dehydrogenation. Adv. Catal. 10, 96–129. [Google Scholar]
  • Boudart, M. (1997) Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim. [Google Scholar]
  • Ichikawa, S. (1988) Heterogeneous Catalysis with Nonuniformly Reactive Adsorbates. J. Phys. Chem. 92, 6970. [Google Scholar]
  • Logadottir, A.,Rod, T.H.,Nørskov, J.K.,Hammer, B.,Dahl, S.,Jacobsen, C.J.H. (2001) The Brønsted-Evans-Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts. J. Catal. 197, 229-231. [CrossRef] [Google Scholar]
  • Chianelli, R.R., Berhault, G., Raybaud, P., Kasztelan, S., Hafner, J., Toulhoat, H. (2002) Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl. Catal. A-Gen. 227, 83. [Google Scholar]
  • Raybaud, P.,Hafner, J.,Kresse, G.,Toulhoat, H. (1997) Ab initio Density Functional Studies of Transition-Metal Sulphides: I. Crytal Structure and Cohesive Properties. J. Phys. Condens. Mat. 9, 11085-11106. [CrossRef] [Google Scholar]
  • Toulhoat, H.,Raybaud, P.,Kasztelan, S.,Kresse, G.,Hafner, J. (1999) Transition Metals to Sulfur Binding Energies Relationship to Catalytic Activities in HDS: Back to Sabatier with First Principle Calculations. Catal. Today 50, 629-636. [CrossRef] [Google Scholar]
  • Toulhoat, H.,Raybaud, P. (2003) Kinetic Interpretation of Catalytic Activity Patterns Based on Theoretical Descriptors. J. Catal. 216, 63-72 [CrossRef] [Google Scholar]
  • Kasztelan, S., Guillaume, D. (1994) Inhibiting Effect of H2S on Toluene Hydrogenation over a MoS2/Al2O3 Catalyst. Ind. Eng. Chem. Res. 33, 203. Erratum (1995) Ind. Eng. Chem. Res. 34, 1500. [Google Scholar]
  • OlguinOrozco, E.,Vrinat, M. (1998) Kinetics of Dibenzothiophene Hydrodesulfurization over MoS2 Supported atalysts: Modelisation of the H2S partial Pressure Effect. Appl. Catal. A-Gen. 170, 195-206. [CrossRef] [Google Scholar]
  • Blanchin, S., Galtier, P., Kasztelan, S.,Kressmann S.,Penet, H.,Perot, G. (2001) Kinetic Modeling of the Effect of H2S and of NH3 on Toluene Hydrogenation in the Presence of a NiMo/Al2O3 Hydrotreating Catalyst. Discrimination between Homolytic and Heterolytic Models. J. Phys. Chem. 105, 10860-10866. [CrossRef] [Google Scholar]
  • Hensen, E.J.M.,Brans, H.J.A.,Lardinois, G.M.H.J., De Beer, V.H.J., Van Veen, J.A.R., Van Santen, R.A. (2000) Periodic Trends in Hydrotreating Catalysis: Thiophene Hydrodesulfurization over Carbon-Supported 4d Transition Metal Sulfides. J. Catal. 192, 98-107. [CrossRef] [Google Scholar]
  • Hermann, N., Brorson, M.,Topsøe H. (2000) Activities of Unsupported Second Transition Series Metal Sulfides for Hydrodesulfurization of Sterically Hindered 4,6-Dimethyldibenzothiophene and of Unsubstituted Dibenzothiophene. Catal. Lett. 65, 169-174. [CrossRef] [Google Scholar]
  • Guernalec, N.,Cseri, T.,Raybaud, P.,Geantet, C.,Vrinat, M. (2004) Influence of H2S on the Hydrogenation Catalytic Activity of Relevant Transition Metal Sulfides. Catal. Today 98, 61-66. [CrossRef] [Google Scholar]
  • Bezverkhyy, I,Danot, M.,Afanasiev, P. (2003) New Low-Temperature Preparations of Some Simple and Mixed Co and Ni Dispersed Sulfides and Their Chemical Behavior in Reducing Atmosphere. Inorg. Chem. 42, 1764-1768. [CrossRef] [PubMed] [Google Scholar]
  • De Los Reyes, A., Vrinat, M., Geantet, C., Breysse, M. (1991) Ruthenium Sulphide Supported on Alumina Catalysts: Physicochemical Characterization and Catalytic Properties in Hydrogenation Reactions. Catal. Today 10, 645. [Google Scholar]
  • Surface Builder Crystal builder, Morphology modules distributed within the Cerius2 (release 4.8.1) and Materials Studio (release 4.0) package by Accelrys ( [Google Scholar]
  • Raybaud, P.,Hafner, J.,Kresse, G.,Kasztelan, S.,Toulhoat, H. (2000) Ab Initio Study of the H2-H2S/MoS2 Gas-Solid Interface: The Nature of the Catalytically Active Sites. J. Catal. 189, 129-146. [CrossRef] [Google Scholar]
  • Raybaud, P.,Hafner, J.,Kresse, G.,Kasztelan, S.,Toulhoat, H. (2000) Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study. J. Catal. 190, 128-143. [CrossRef] [Google Scholar]
  • Grillo, M.E.,Smelyanski, V.,Sautet, P.,Hafner, J. (1999) Density Functional Study of the Structural and Electronic Properties of RuS2(111). I. Bare Surfaces. Surf. Sci. 439, 163-172. [CrossRef] [Google Scholar]
  • Grillo, M.E.,Sautet, P. (2000) Density Functional Study of the Structural and Electronic Properties of RuS2(111). II. Hydrogenated Surfaces. Surf. Sci. 457, 285-293. [CrossRef] [Google Scholar]
  • Schweiger, H.,Raybaud, P.,Kresse, G.,Toulhoat, H. (2002) Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study. J. Catal. 207, 76-87. [CrossRef] [Google Scholar]
  • Schweiger, H.,Raybaud, P.,Toulhoat, H. (2002) Promoter Sensitive Shapes of Co(Ni)MoS Nanocatalysts in Sulfo-Reductive Conditions. J. Catal. 212, 33-38. [CrossRef] [Google Scholar]
  • Kasztelan, S. (1989) The Importance of Active Site Structure on the Appearance of Periodic Trends of Catalytic Properties. Catal. Lett. 2, 165. [Google Scholar]
  • McGarvey, G.B.,Kasztelan, S. (1994) An Investigation of the Reduction Behavior of MoS2/Al2O3 and the Subsequent Detection of Hydrogen on the Surface. J. Catal. 148, 149–156. [CrossRef] [Google Scholar]
  • Kasztelan, S. (1996) Hydrotreating Technology for Pollution Control, Marcel Dekker Inc., New-York. [Google Scholar]
  • Girgis, M.J.,Gates, B.C.,Michael, J.,Bruce, C. (1991) Reactivities, Reaction Networks, and Kinetics in High-Pressure Catalytic Hydroprocessing. Ind. Eng. Chem. Res. 30, 2021-2058. [CrossRef] [Google Scholar]
  • Vrinat, M.L. (1983) The Kinetics of the Hydrodesulfurization Process - a Review. Appl. Catal. 6, 137-158. [CrossRef] [Google Scholar]
  • Kasztelan, S. (1992) Kinetic Interpretation of Periodic Trends in Heterogeneous Catalysis. Appl. Catal. A-Gen. 83, L1-L5. [CrossRef] [Google Scholar]
  • Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., (2004) The Brønsted-Evans-Polanyi Relation and the Volcano Curve in Heterogeneous Catalysis. J. Catal. 224, 206-217. [Google Scholar]
  • Brønsted, J.N.,Pedersen, K.J. (1924) The Catalytic Decomposition of Nitramide and its Physico-Chemical Applications. Z. Phys. Chem. 108, 185-235. [Google Scholar]
  • Evans, M.G.,Polanyi, M. (1936) Further Considerations of the Thermodynamics of Chemical Equilibria and Reaction Rates. T. Faraday Soc. 32, 1333-1360. [CrossRef] [Google Scholar]
  • Evans, M.G.,Polanyi, M. (1938) Inertia and Driving Force of Chemical Reactions. T. Faraday Soc. 34, 11-24. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.