Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 515 - 525
DOI https://doi.org/10.2516/ogst:2006032a
Published online 01 January 2007
  • Sabatier, P. (1911) Hydrogénations et Déshydrogénations par Catalyse. Berichte Deut. Chem. Gesellschaft 44, 2001. [Google Scholar]
  • Balandin, A.A. (1958) The Nature of Active Centers and the Kinetics of Catalytic Dehydrogenation. Adv. Catal. 10, 96–129. [Google Scholar]
  • Boudart, M. (1997) Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim. [Google Scholar]
  • Ichikawa, S. (1988) Heterogeneous Catalysis with Nonuniformly Reactive Adsorbates. J. Phys. Chem. 92, 6970. [Google Scholar]
  • Logadottir, A.,Rod, T.H.,Nørskov, J.K.,Hammer, B.,Dahl, S.,Jacobsen, C.J.H. (2001) The Brønsted-Evans-Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts. J. Catal. 197, 229-231. [CrossRef] [Google Scholar]
  • Chianelli, R.R., Berhault, G., Raybaud, P., Kasztelan, S., Hafner, J., Toulhoat, H. (2002) Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl. Catal. A-Gen. 227, 83. [Google Scholar]
  • Raybaud, P.,Hafner, J.,Kresse, G.,Toulhoat, H. (1997) Ab initio Density Functional Studies of Transition-Metal Sulphides: I. Crytal Structure and Cohesive Properties. J. Phys. Condens. Mat. 9, 11085-11106. [CrossRef] [Google Scholar]
  • Toulhoat, H.,Raybaud, P.,Kasztelan, S.,Kresse, G.,Hafner, J. (1999) Transition Metals to Sulfur Binding Energies Relationship to Catalytic Activities in HDS: Back to Sabatier with First Principle Calculations. Catal. Today 50, 629-636. [CrossRef] [Google Scholar]
  • Toulhoat, H.,Raybaud, P. (2003) Kinetic Interpretation of Catalytic Activity Patterns Based on Theoretical Descriptors. J. Catal. 216, 63-72 [CrossRef] [Google Scholar]
  • Kasztelan, S., Guillaume, D. (1994) Inhibiting Effect of H2S on Toluene Hydrogenation over a MoS2/Al2O3 Catalyst. Ind. Eng. Chem. Res. 33, 203. Erratum (1995) Ind. Eng. Chem. Res. 34, 1500. [Google Scholar]
  • OlguinOrozco, E.,Vrinat, M. (1998) Kinetics of Dibenzothiophene Hydrodesulfurization over MoS2 Supported atalysts: Modelisation of the H2S partial Pressure Effect. Appl. Catal. A-Gen. 170, 195-206. [CrossRef] [Google Scholar]
  • Blanchin, S., Galtier, P., Kasztelan, S.,Kressmann S.,Penet, H.,Perot, G. (2001) Kinetic Modeling of the Effect of H2S and of NH3 on Toluene Hydrogenation in the Presence of a NiMo/Al2O3 Hydrotreating Catalyst. Discrimination between Homolytic and Heterolytic Models. J. Phys. Chem. 105, 10860-10866. [CrossRef] [Google Scholar]
  • Hensen, E.J.M.,Brans, H.J.A.,Lardinois, G.M.H.J., De Beer, V.H.J., Van Veen, J.A.R., Van Santen, R.A. (2000) Periodic Trends in Hydrotreating Catalysis: Thiophene Hydrodesulfurization over Carbon-Supported 4d Transition Metal Sulfides. J. Catal. 192, 98-107. [CrossRef] [Google Scholar]
  • Hermann, N., Brorson, M.,Topsøe H. (2000) Activities of Unsupported Second Transition Series Metal Sulfides for Hydrodesulfurization of Sterically Hindered 4,6-Dimethyldibenzothiophene and of Unsubstituted Dibenzothiophene. Catal. Lett. 65, 169-174. [CrossRef] [Google Scholar]
  • Guernalec, N.,Cseri, T.,Raybaud, P.,Geantet, C.,Vrinat, M. (2004) Influence of H2S on the Hydrogenation Catalytic Activity of Relevant Transition Metal Sulfides. Catal. Today 98, 61-66. [CrossRef] [Google Scholar]
  • Bezverkhyy, I,Danot, M.,Afanasiev, P. (2003) New Low-Temperature Preparations of Some Simple and Mixed Co and Ni Dispersed Sulfides and Their Chemical Behavior in Reducing Atmosphere. Inorg. Chem. 42, 1764-1768. [CrossRef] [PubMed] [Google Scholar]
  • De Los Reyes, A., Vrinat, M., Geantet, C., Breysse, M. (1991) Ruthenium Sulphide Supported on Alumina Catalysts: Physicochemical Characterization and Catalytic Properties in Hydrogenation Reactions. Catal. Today 10, 645. [Google Scholar]
  • Surface Builder Crystal builder, Morphology modules distributed within the Cerius2 (release 4.8.1) and Materials Studio (release 4.0) package by Accelrys (http://www.accelrys.com). [Google Scholar]
  • Raybaud, P.,Hafner, J.,Kresse, G.,Kasztelan, S.,Toulhoat, H. (2000) Ab Initio Study of the H2-H2S/MoS2 Gas-Solid Interface: The Nature of the Catalytically Active Sites. J. Catal. 189, 129-146. [CrossRef] [Google Scholar]
  • Raybaud, P.,Hafner, J.,Kresse, G.,Kasztelan, S.,Toulhoat, H. (2000) Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study. J. Catal. 190, 128-143. [CrossRef] [Google Scholar]
  • Grillo, M.E.,Smelyanski, V.,Sautet, P.,Hafner, J. (1999) Density Functional Study of the Structural and Electronic Properties of RuS2(111). I. Bare Surfaces. Surf. Sci. 439, 163-172. [CrossRef] [Google Scholar]
  • Grillo, M.E.,Sautet, P. (2000) Density Functional Study of the Structural and Electronic Properties of RuS2(111). II. Hydrogenated Surfaces. Surf. Sci. 457, 285-293. [CrossRef] [Google Scholar]
  • Schweiger, H.,Raybaud, P.,Kresse, G.,Toulhoat, H. (2002) Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study. J. Catal. 207, 76-87. [CrossRef] [Google Scholar]
  • Schweiger, H.,Raybaud, P.,Toulhoat, H. (2002) Promoter Sensitive Shapes of Co(Ni)MoS Nanocatalysts in Sulfo-Reductive Conditions. J. Catal. 212, 33-38. [CrossRef] [Google Scholar]
  • Kasztelan, S. (1989) The Importance of Active Site Structure on the Appearance of Periodic Trends of Catalytic Properties. Catal. Lett. 2, 165. [Google Scholar]
  • McGarvey, G.B.,Kasztelan, S. (1994) An Investigation of the Reduction Behavior of MoS2/Al2O3 and the Subsequent Detection of Hydrogen on the Surface. J. Catal. 148, 149–156. [CrossRef] [Google Scholar]
  • Kasztelan, S. (1996) Hydrotreating Technology for Pollution Control, Marcel Dekker Inc., New-York. [Google Scholar]
  • Girgis, M.J.,Gates, B.C.,Michael, J.,Bruce, C. (1991) Reactivities, Reaction Networks, and Kinetics in High-Pressure Catalytic Hydroprocessing. Ind. Eng. Chem. Res. 30, 2021-2058. [CrossRef] [Google Scholar]
  • Vrinat, M.L. (1983) The Kinetics of the Hydrodesulfurization Process - a Review. Appl. Catal. 6, 137-158. [CrossRef] [Google Scholar]
  • Kasztelan, S. (1992) Kinetic Interpretation of Periodic Trends in Heterogeneous Catalysis. Appl. Catal. A-Gen. 83, L1-L5. [CrossRef] [Google Scholar]
  • Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., (2004) The Brønsted-Evans-Polanyi Relation and the Volcano Curve in Heterogeneous Catalysis. J. Catal. 224, 206-217. [Google Scholar]
  • Brønsted, J.N.,Pedersen, K.J. (1924) The Catalytic Decomposition of Nitramide and its Physico-Chemical Applications. Z. Phys. Chem. 108, 185-235. [Google Scholar]
  • Evans, M.G.,Polanyi, M. (1936) Further Considerations of the Thermodynamics of Chemical Equilibria and Reaction Rates. T. Faraday Soc. 32, 1333-1360. [CrossRef] [Google Scholar]
  • Evans, M.G.,Polanyi, M. (1938) Inertia and Driving Force of Chemical Reactions. T. Faraday Soc. 34, 11-24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.