Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 1, January-February 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 177 - 192
DOI https://doi.org/10.2516/ogst:2005011
Publié en ligne 1 décembre 2006
  • Aharonov, E.,Rothman, D.H. and Thompson, A.H. (1997) Transport properties and diagenesis in sedimentary rocks: the role of micro-scale geometry. Geology, 25, 6, 547-550. [CrossRef] [Google Scholar]
  • Auzerais, F.M.,Dunsmuir, J.,Ferréol, B.B.,Martys, N.,Olson, J.,Ramakrishnan, S.,Rothman, D.H. and Schwartz, L.M. (1996) Transport in sandstone: A study based in three-dimensional microtomography. Geophysical Research Letters, 23, 7, 705-708. [CrossRef] [Google Scholar]
  • Bernard, D., Gendron, D., Bordere, S. and Heintz, J.M. (2002) First direct 3D visualisation of microstructural changes during sintering. ESRF Highlights 2001, 102-103. [Google Scholar]
  • Bernard, D., Gendron, D., Heintz, J.M., Bordere, S. and Étourneau, J. (2004) First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography. Submitted to Acta Materialia. [Google Scholar]
  • Bernabé, Y. and Revil, A. (1995) Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophysical Research Letters, 22, 12, 1529-1532. [CrossRef] [Google Scholar]
  • Bernabé, Y,Mok, U. and Evans, B. (2003) Permeability-porosity relationships in rocks subjected to various evolution processes. Pure and Applied Geophysics, 160, 937-960. [CrossRef] [Google Scholar]
  • Bourbié, T. and Zinszner, B. (1985) Hydraulic and acoustic properties as function of porosity in Fontainebleau sandstone. Journal of Geophysical Research, 90, 11524-11532. [CrossRef] [Google Scholar]
  • Brosse, E., Magnier, C. and Vincent, B. (2005) Modelling fluidrock interaction induced by the percolation of CO2-enriched solutions in core samples: 1. The role of reactive surface area. Oil & Gas Science and Technology, this issue. [Google Scholar]
  • Carman, P.C. (1937) Fluid flow through granular beds. Transactions for Institute of Chemical Engineer, 15, 150-166. [Google Scholar]
  • Chou, L.,Garrels, R.M. and Wollast, R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chemical Geology, 78, 269-282. [CrossRef] [Google Scholar]
  • Coker, D.A.,Tortaquo, S. and Dunsmuir, J.H. (1996) Morphology and physical properties of Fontainebleau sandstone via a tomographic analysis. Journal of Geophysical Research, 101, B8, 17497-17506. [CrossRef] [Google Scholar]
  • Cole, M.E., Hazlett, R.D., Muegge, E.L., Jones, K.W., Andrews, B., Dowd, B., Siddons, P., Peskin, A., Spanne, P. and Soll, W.E. (1996) Developments in synchrotron X-Ray microtomography with applications to flow in porous media. SPE-36531. In: Annual Technical Conference and Exhibition Proceedings, V. Omega, Formation Evaluation and Reservoir Geology, SPE, 413-424. [Google Scholar]
  • Coudrain-Ribstein, A.,Gouze, P. and de Marsily, G. (1998) Temperature – carbon dioxide partial pressure trends in confined aquifers. Chemical Geology, 145, 73-89. [Google Scholar]
  • David, C.,Wong, T.F.,Zhu, W. and Zhang, J. (1994) Laboratory measurement of compaction-induced permeability change in porous rock: implications for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, 143, 425-456. [CrossRef] [Google Scholar]
  • Delerue, J.F.,Perrier, E.,Yu, Z.Y. and Velde, B. (1999) New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils. Physics and Chemistry of the Earth (A), 24, 7, 639-644. [CrossRef] [Google Scholar]
  • Donaldson, E.R., Baker, B.A. and Carroll, H.B. (1977) Particle transport in sandstones. SPE-6905. In: 52nd Annual Fall Technical Conference and Exhibition of the SPE of AIME, Denver CO, USA, Oct. 9-12. [Google Scholar]
  • Gouze, P.,Noiriel, C.,Bruderer, C.,Loggia, D. and Leprovost, R. (2003) X-ray tomography characterization of fracture surface during dissolution. Geophysical Research Letters, 30, 5, 71-1-71-4. [CrossRef] [Google Scholar]
  • Hammersley, A.P. (2001) http://www.esrf.fr/computing/scientific/HST/HST_REF/hst.html. [Google Scholar]
  • Lackner, K.S. (2003) A guide to CO2 sequestration. Sciences, 300, 1677-1678. [CrossRef] [PubMed] [Google Scholar]
  • Landis, E.N, Nagy, E.N and Keane, D.T. (2003) Microstructure and fracture in three-dimensions. Engineering Fracture Mechanics, 70, 911-925. [CrossRef] [Google Scholar]
  • Lasaga, A.C. (1981) Transition state theory. In: Kinetics of Geochemical Processes, A.C. Lasaga and R.J. Kirkpatrick, Eds., Reviews in Mineralogy, 8, 135-169. [Google Scholar]
  • Lindquist, W.B.,Lee, S.M.,Coker, D.A.,Jones, K.W. and Spanne, P. (1996) Medial axis analysis of void structure in threedimensional tomographic images of porous media. Journal of Geophysical Research, 101, 8297-8310. [CrossRef] [Google Scholar]
  • Lindquist, W.B. and Venkatarangen, A. (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. Journal of Geophysical Research, 105, B9, 21509-21527. [CrossRef] [Google Scholar]
  • Mc Cune, C.C.,Fogler, H.S. and Kline, W.E. (1979) An experimental technique for obtaining permeability-porosity relationships in acidized porous media. Industrial Engineering Chemical Fundamentals, 18, 188-191. [CrossRef] [MathSciNet] [Google Scholar]
  • Mok, U.,Bernabé, Y. and Evans, B. (2002) Permeability, porosity and pore geometry of chemically altered porous silica glass. Journal of Geophysical Research, 107, B1, 4-1-4-10. [CrossRef] [Google Scholar]
  • Nakashima, Y. and Watanabe, Y. (2002) Estimate of transport properties of porous media by microfocus X-ray computed tomography and random walk simulation. Water Resources Research, 38, 12, X1-X12. [CrossRef] [Google Scholar]
  • Pape, H.,Clauser, C. and Iffland, J. (1999) Permeability prediction based on fractal pore-space geometry. Geophysics, 64, 5, 1447-1460. [CrossRef] [Google Scholar]
  • Plummer, L.N. and Busemberg, E. (1982) The solubility of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and a evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochemica and Cosmochemica Acta, 46, 1011-1040. [Google Scholar]
  • Plummer, L.N.,Wigley, T.M.L. and Parkhurst, D.L. (1978) The kinetics of calcite dissolution in CO2-water systems at 5° to 60°C and 0.0 to 1.0 atm CO2. American Journal of Science, 278, 179-216. [Google Scholar]
  • Proussevitch, A.A. and Sahagian, D.L. (2001) Recognition and separation of discrete objects within complex 3D voxelized structures. Computers and Geosciences, 27, 4, 441-454. [CrossRef] [Google Scholar]
  • Revil, A. and Cathles, L.M. (1999) Permeability of shaly sands. Water Resources Research, 35, 3, 651-662. [CrossRef] [Google Scholar]
  • Richard, P.,Philippe, P.,Barbe, F.,Bourles, S.,Thibault, X. and Bideau, D. (2003) Analysis by x-ray microtomography of a granular packing undergoing compaction. Physical Review E, 68, 020301. [CrossRef] [Google Scholar]
  • Rickard, D. and Sj�g, E.L. (1983) Mixed kinetic control of calcite dissolution rates. American Journal of Science, 283, 815-830. [Google Scholar]
  • Roques, H. and Ek, C. (1973) Etude expérimentale de la dissolution des calcaires par une eau chargée de CO2. Annales spéléologie, 28, 4, 549-563. [Google Scholar]
  • Spanne, P.,Thovert, J.F.,Jacquin, C.J.,Lindquist, W.B.,Jones, K.W. and Adler, P.M. (1994) Synchrotron computed microtomography of porous media: topology and transports. Physical Review Letters, 73, 14, 2001-2004. [Google Scholar]
  • Walsh, J.B. and Brace, W.F. (1984) The effect of pressure on porosity and the transport properties of rock. Journal of Geophysical Research, 89, 11, 9425-9431. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.