Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 1, January-February 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 193 - 203
Publié en ligne 1 décembre 2006
  • Albarran, J.L.,Martinez, L., and Lopez, H.F. (1999) Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel. Corrosion Science, 41, 1037-1049. [CrossRef] [Google Scholar]
  • Audétat, A.,Günter, D., and Heinrich, C.A. (2000) Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole granite, Australia. Economic Geology, 95, 1563-1581. [Google Scholar]
  • Bachu, S. (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Conversion and Management, 41, 953-970. [Google Scholar]
  • Bachu, S. (2002) Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43, 87-102. [CrossRef] [Google Scholar]
  • Bodnar, R.J. and Sterner, S.M. (1987) Synthetic fluid inclusions. In: Hydrothermal Experimental Techniques (ed. Ulmer, G.C. and Barnes, H.L.), 423-457. John Wiley & sons. [Google Scholar]
  • Bruant, R.G.J.,Guswa, A.J.,Celia, M.A., and Peters, C.A. (2002) Safe storage of CO2 in deep saline aquifers. Environmental Science & Technology, 36, 11, 241 A-245 A. [Google Scholar]
  • Carneiro, R.A., Ratnapuli, R.C., and Freitas CunhaLins, V. (2003) The influence of chemical composition and microstructure of API linepipe steels on hydrogen cracking and sulfide stress corrosion cracking. Materials Science and Engineering, A357, 104-110. [CrossRef] [Google Scholar]
  • Carroll, J.J. and Maddocks, J.R. (1999) Design considerations for acid gas injection. Laurance Reid Gas Conditionning Conference. [Google Scholar]
  • Celia, M.A. and Bachu, S. (2002) Geological sequestration of CO2: is leakage unavoidable and acceptable? GHGT-6, 6th Int. conf. on GreenHouse Gas control Technologies). [Google Scholar]
  • Chakma, A. (1997) Acid gas re-injection - a practical way to eliminate CO2 emmissions from gas processing plants. Energy Conversion and Management, 38, (Supplt), S 205-S 209. [Google Scholar]
  • Cieslak, J.,Dubiel, S.M., and Zurek, Z. (1998) Investigation of scales resulted from a high-temperature sulphidation of Fe-Cr alloys. Journal of Alloys and Compounds, 26, 297-304. [CrossRef] [Google Scholar]
  • Clavel, T., Falcy, M., Hesbert, A., Jargot, D., Protois, J.C., Reynier, M., and Schneider, O. (1997) Sulfure d’hydrogène. Fiche toxicologique n° 32 de l'INRS. [Google Scholar]
  • Connock, L. (2001) Acid gas re-injection reduces sulphur burden. Sulphur, 272, 35-41. [Google Scholar]
  • Cui, Z.D.,Wu, S.L.,Li, C.F.,Zhu, S.L., and Yang, X.J. (2004) Corrosion behaviour of oil tube steels under conditions of multiphase flow saturated with super-critical carbon dioxide. Materials Letters, 58, 1035-1040. [CrossRef] [Google Scholar]
  • Davison, J., Freund, P., and Smith, A. (2001). Putting carbon back into the ground. IEA Greenhouse Gas R&D Programme Report. [Google Scholar]
  • Domizzi, G.,Anteri, G., and Ovejero-Garcia, J. (2001) Influence of sulphur content and inclusion distribution on the hydrogen induced blister in pressure vessel and pipeline steels. Corrosion Science, 43, 325-339. [CrossRef] [Google Scholar]
  • Dubessy, J.,Poty, B., and Ramboz, C. (1989) Advances in C-OH- N-S fluid geochemistry based on Raman analysis of fluid inclusions. European Journal of Mineralogy, 1, 517-534. [CrossRef] [Google Scholar]
  • Dubessy, J.,Buschaert, S.,Lamb, W., and Pironon, J. (2001) Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins. Chemical Geology, 173, 193-205. [Google Scholar]
  • Dubessy, J.,Lhomme, T.,Boiron, M.C., and Rull, F. (2002) Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: application to fluid inclusions. Applied Spectroscopy, 56, 99-106. [CrossRef] [Google Scholar]
  • Fabre, C.,Boiron, M.C.,Dubessy, J., and Moissette, A. (1999) Determination of ions in individual fluid inclusions by laser ablation - optical emission spectroscopy: development and applications to natural fluid inclusions. Journal of Analytical Atomic Spectrometry, 14, 913-922. [CrossRef] [Google Scholar]
  • Fabre, C.,Boiron, M.C.,Dubessy, J.,Cathelineau, M., and Banks, D. (2002) Palaeo-fluid chemistry of single fluid event: a bulk and in-situ multi-technique analysis (LIBS, Raman) of an alpine fluid (Mont-Blanc). Chemical geology, 182, 249-262. [CrossRef] [Google Scholar]
  • Feugier, A. (2002) Une réponse à l’effet de serre: la séquestration du CO2. Lettre de la Direction générale de l’Énergie et des Matières Premières, 20, 3-8. [Google Scholar]
  • Frantz, J.D.,Zhang, Y.,Hickmott, D.D., and Hoering, T.C. (1989) Hydrothermal reactions involving equilibrium between minerals and mixed volatiles. 1. Techniques for experimentally loading and analysing gases and their application to synthetic fluid inclusions. Chemical Geology, 76, 57-70. [CrossRef] [Google Scholar]
  • Frantz, J.D.,Popp, R.K., and Hoering, T.C. (1992) The compositional limits of fluid immiscibility in the system H2O-NaCl-CO2 as determined with the use of synthetic inclusions in conjunction with mass spectrometry. Chemical Geology, 98, 237-255. [CrossRef] [Google Scholar]
  • Giammar, D.E., Myneni, S.C.B., Bruant, R.G., and Peters, C.A. (2002). Characterization of mineral surfaces weathered under high pressure and carbon dioxide conditions. Research Presentation. Carbon Mitigation Initiative (CMI) Group, Princeton Environmental Institute. [Google Scholar]
  • Gravier, J.F. (1986) Propriétés des fluides de gisements. Cours de production - tome 2, Institut français du pétrole. [Google Scholar]
  • Guillaume, D.,Teinturier, S.,Dubessy, J., and Pironon, J. (2003) Calibration of methane analysis by Raman spectroscopy in H2ONaCl- CH4 fluid inclusions. Chemical Geology, 14103, 1-9. [Google Scholar]
  • Gunter, W.D.,Wiwchar, B., and Perkins, H. (1997) Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestring reactions by geochemical modelling. Mineralogy and Petrology, 59, 121-140. [CrossRef] [Google Scholar]
  • IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Report. [Google Scholar]
  • Jahn, F., Cook, M., and Graham, M. (1998) Hydrocarbon Exploration and Production. Elsevier. [Google Scholar]
  • Kalousek, G.L. (1957) Crystal chemistry of hydrous calcium silicates: I, substitution of aluminum in lattice of tobermorite. Journal of the American Ceramic Society, 40, 3, 74-80. [CrossRef] [Google Scholar]
  • Kaszuba, J.P.,Janecky, D.R., and Snow, M. G. (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon. Applied Geochemistry, 18, 1065-1080. [Google Scholar]
  • Krilov, Z., Loncaric, B., and Miksa, Z. (2000) Investigation of a long-term cement deterioration under a high-temperature, sour gas downhole environment. Society of Petroleum Engineers Journal, Paper SPE 58771. [Google Scholar]
  • Lamb, W.M.,Popp, R.K., and Boockoff, L.A. (1996) The determination of phase relations in the CH4 - H2O - NaCl system at 1 kbar, 400 to 600°C using synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 60, 11, 1885-1897. [CrossRef] [Google Scholar]
  • Lamb, W.M.,Mcshane, C.J., and Popp, R.K. (2002) Phase relations in the CH4-H2O-NaCl system at 2 kbar, 300 to 600°C as determined using synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 22, 3971-3986. [CrossRef] [Google Scholar]
  • Landais, P.,Michels, R., and Poty, B. (1989) Pyrolysis of organic matter in cold-seal pressure autoclaves. Experimental approach and applications. Journal of Analytical and Applied Pyrolysis, 16, 103-115. [CrossRef] [Google Scholar]
  • Méducin, F., Noïk, C,Rivereau, A.,Hamel, G. and Zanni, H. (2001) Oilwell cements: NMR contribution to establish the phase diagram pressure/temperature of the mixture H2O/Ca3SiO5. Comptes Rendus de l’Académie des Sciences de Paris/Chemistry 4, 801-804. [Google Scholar]
  • Méducin, F., Noïk, C,Rivereau, A. and Zanni, H. (2002) Complementary analyses of a tricalcium silicate sample hydrated at high pressure and temperature. Cement and Concrete Research, 32, 65-70. [CrossRef] [Google Scholar]
  • (2004). [Google Scholar]
  • Onan, D.D. (1984) Effects of supercritical carbon dioxide on well cements. Society of Petroleum Engineers Journal, Paper SPE 12593. [Google Scholar]
  • Pearce, J.M.,Holloway, S.,Wacker, H.,Nelis, M.K.,Rochelle, C., and Bateman, K. (1996) Natural occurences as analogues for the geological disposal of carbon dioxide. Energy Conversion and Management, 37, 6-8, 1123-11128. [CrossRef] [Google Scholar]
  • Rasband, W. (2004) ImageJ 1.32 h. National Institute of Health, USA. [Google Scholar]
  • Reeve, D.A. (2001) Le captage et le stockage des émissions de dioxyde de carbone. Un outil précieux pour le Canada dans le contexte du Protocole de Kyoto. Rapport du Bureau de Recherche et de développement énergétiques, ressources naturelles, Canada. [Google Scholar]
  • Seyfried, W.E.J., Janecky, D.R., and Berndt, M.E. (1987) Rocking autoclaves for hydrothermal experiments. The flexible reaction-cell system. In: Hydrothermal Experimental Techniques (ed. Ulmer, G.C. and Barnes, H.L.), 216-239, John Wiley & Sons. [Google Scholar]
  • Shen, J.C. (1989) Effects of CO2 attack on cement in hightemperature. Society of Petroleum Engineers Journal, Paper SPE/IADC 18618. [Google Scholar]
  • Shiraki, R. and Dunn, T.L. (2000) Experimental study on waterrock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Applied Geochemistry, 15, 265-279. [Google Scholar]
  • Soong, Y., Goodman, A L.,McCarthy-Jones, J.R., and Baltrus, J.P. (2004) Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Conversion and Management, 45, 11-12, 1845-1859. [CrossRef] [Google Scholar]
  • St John, D.A., Poole, A.B., and Sims, I. (1998) Concrete Petrography. Arnold. [Google Scholar]
  • Taylor, H.F.W. (1997) Cement Chemistry. Thomas Telford. [Google Scholar]
  • Teinturier, S. (2002) Diagénèse expérimentale du quartz en présence d’hydrocarbures. PhD Thesis/Thèse, université de Nancy I. [Google Scholar]
  • Teinturier, S.,Elie, M., and Pironon, J. (2003) Evidence of oil cracking using synthetic petroleum inclusion. Journal of Geochemical Exploration, 78-79, 421-425. [CrossRef] [Google Scholar]
  • Teinturier, S. and Pironon, J. (2003) Synthetic fluid inclusions as recorders of microfracture healing and overgrowth rates. American Mineralogist, 88, 1204-1208 [CrossRef] [Google Scholar]
  • Van der Lee, J. and De Windt, L. (2002) CHESS Tutorial and Cookbook. Updated for version 3.0. Users Manual Nr LHM/RD/02/13, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • (2004) [Google Scholar]
  • Wichert, E. (1996) Sulfur disposal by acid gas injection. Society of Petroleum Engineers Journal, Paper SPE 35585, 193-200. [Google Scholar]
  • Wichert, E. (1997) Acid gas injection eliminates sulfur recovery expense. Oil and Gas Journal, 95, 16, 64-72. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.