Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Numéro 1, January-February 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 107 - 120
DOI https://doi.org/10.2516/ogst:2005007
Publié en ligne 1 décembre 2006
  • Bihannic, I.,Tchoubar, D.,Lyonnard, S.,Besson, G., and Thomas, F. (2001) X-ray scattering investigation of swelling clay fabric 1. The dry state, Journal of Colloid and Interface Science, 240, 211-218. [CrossRef] [PubMed] [Google Scholar]
  • Bouchet, A., Parneix, J. C. and Rassineux, F. (1993) Transformations des minéraux argileux au contact d’intrusions basaltiques récentes. Rapport ERM 93 036 AB 140. [Google Scholar]
  • Cranga, M., Trotignon L., Martial C. and Castelier, E. (1998) Simulation of the evolution of a clay engineered barrier by interaction with granitic groundwater: dynamics and characteristic timescales. In: Scientific Basis for Nuclear Waste Management XXI, (Mater. Res. Soc. Proc. 506, Davos, 1997) 629-636. [Google Scholar]
  • Dormieux, L.,Lemarchand, E., and Coussy, O. (2003) Macroscopic and micromechanical approaches to the modelling of the osmotic swelling in clays. Transport in Porous Media, 50, 75-91. [CrossRef] [Google Scholar]
  • Diaz, M.,Laperche, V.,Harsh, J. and Prost, R. (2002) Far infrared spectra of K+ in dioctahedral and trioctahedral mixedlayer minerals. American Mineralogist, 87, 1207-1214. [CrossRef] [Google Scholar]
  • Di Maio, C. (1996) Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 46, 4, 695-707. [CrossRef] [Google Scholar]
  • Ishii, M.,Shimanouchi, T. and Nakahira, M. (1967) Far infrared absorption of layer silicates, Inorg. Chimica Acta, 1, 387-392. [CrossRef] [Google Scholar]
  • Johnston, C.T.,Sposito, G. and Erickson, C. (1992) Vibrationnal probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40, 722-730. [CrossRef] [Google Scholar]
  • Kohler, E. (2001) Réactivité de mélanges synthétiques smectite/kaolinite et smectite/aluminium (gel) en présence d’un excès de fer (métal). Rapport de DRT de l’université d’Évry Val d’Essonne. [Google Scholar]
  • Kohler, E, Raynal, J and Jullien, M. "Illite and smectite formation in mixed-layered illite-smectite matrix heated by a basaltic intrusion: The case of argilites at Laumiere (Aveyron, France)". American Mineralogist, submitted. [Google Scholar]
  • Krohn, K.P. (2003) New conceptual models for the resaturation of bentonite. Applied Clay Science, 23, 25-33. [CrossRef] [Google Scholar]
  • Kubler, B. (1967) Stabilité et fidélité de mesures simples sur les diagrammes de rayons X. Bull. Groupe franç. argiles, 19, 39-45. [Google Scholar]
  • Kubler, B. and Jaboyedoff, M. (2000) Illite cristallinity. C.R. Acad. Sci. Paris, Science de la Terre et des Planètes, 331, 75-89. [CrossRef] [Google Scholar]
  • Lagneau, V., Trotignon, L., Van der Lee, J. and Soreau, P. Clogging of porous media due to geochemical reactions: column experiments and numerical simulations. Water Resour. Res. (in press). [Google Scholar]
  • Lanson, B. and Besson, G. (1992) Characterization of the end of smectite-to-illite transformation: decomposition of x-ray patterns. Clays and Clay Minerals, 40, 40-52. [CrossRef] [Google Scholar]
  • Lanson, B. and Bouchet, A. (1995) Identification des minéraux argileux par diffraction des rayons X: apport du traitement numérique. Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, 19, 91-118. [Google Scholar]
  • Lanson, B. and Velde, B. (1992) Decomposition of X-ray diffraction patterns: a convenient way to describe complex I/S diagenetic evolution. Clays and Clay Minerals, 40, 629-643. [CrossRef] [Google Scholar]
  • Lanson, B.,Velde, B. and Meunier, A. (1998) Late-stage diagenesis of illitic clay minerals as seen by decomposition of Xray diffraction patterns: Constrasted behaviors of sedimenary basins with different burial histories. Clays and Clay Minerals, 46, 69-78. [CrossRef] [Google Scholar]
  • Lantenois S., Plan殮 A., Jullien M., Muller F., Bauer A., Lanson B. (2003) Iron-smectites interactions in aqueous solution: a quantitative approach Euroclay 2003. 10th Conference of the European Clay Groups Association, 22-26 June, Modene, Italy. [Google Scholar]
  • Lantenois, S. (2003) Réactivité fer métal/smectites en milieu hydraté 80 °C. Thèse de doctorat, ISTO, université d’Orléans.. [Google Scholar]
  • Laperche, V. (1991) Étude de l’état et de la localisation des cations compensateurs dans les phyllosilicates. Thèse de l’université de Paris VII, UFR des sciences physiques de la Terre. [Google Scholar]
  • Leroy, P., and Revil, A. (2004) A triple-layer model of the surface electrochemical properties of clay minerals: Journal of Colloid and Interface Science, 270, 371-380. [CrossRef] [PubMed] [Google Scholar]
  • Lichtner P.C., Steefel C.I., Oelkers E.H. (eds.) (1996) Reactive transport in porous media. Reviews in Mineralogy, 34. [Google Scholar]
  • Loret, B.,Hueckel, T., and Gajo, A. (2002) Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays. International Journal of Solids and Structures, 39, 2773-2806. [CrossRef] [Google Scholar]
  • Madejova, J.,Janek, M.,Komadel, P.,Herbert, H.J. and Moog, H.C. (2002) FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, 20, 255-271 [CrossRef] [Google Scholar]
  • Marcial, D., Delage, P., and Cui, Y.J. (2002) Effect of exchangeable cations on the compressibility of bentonite clays. In: Di Maio, A., Hueckel, T., and Loret, B. (eds.) Chemo- Mechanical Coupling in Clays, June 27-30, Maratea, Italia, Swets and Zeitlinger B.V., Lisse, The Netherlands, 177-188. [Google Scholar]
  • Mathieu-Balster, I., and Sicard, J. (1999) Thermodynamics of irreversible processes applied to solute transport in non saturated porous media. Journal of Non-Equilibrium Thermodynamics, 24, 107-122. [CrossRef] [Google Scholar]
  • Moyne, C., and Murad, M. (2002a) Micromechanical computational modeling of hydration swelling of montmorillonite. In: Maio, A., Hueckel, T., and Loret, B. (eds.) Chemo-Mechanical Coupling in Clays, June 27-30, Maratea, Italia, Swets and Zeitlinger B.V., Lisse, The Netherlands, 121-134. [Google Scholar]
  • Moyne, C., and Murad, M.A. (2002b) Electro-chemo-mechanical couplings in swelling clays derived from a micro/macrohomogenization procedure. International Journal of Solids and Structures, 39, 6159-6190. [CrossRef] [Google Scholar]
  • Norrish, K. (1954) The swelling of montmorillonite. Faraday Society of London, 18, 120-134. [CrossRef] [Google Scholar]
  • Papillon, F.,Jullien, M. and Bataillon, C. (2003) Carbon steel behaviour in compacted clay: two long term tests for corrosion prediction. In Prediction of the long term corrosion behaviour in nuclear waste systems. Féron and MacDonald Eds., European Federation of Corrosion Publications, 36, 439-454, Maney Publishing, UK. [Google Scholar]
  • Pelletier, M., de Donato, P., Thomas, F., Michot, L.J., Gérard, G. and Cases, J.M. (1997) 11th International Clay Conference, Clays for our Future, H. Kodama, A. R. Mermut, J.K. Torrance (eds.) ICC97 Publisher, 555-567. [Google Scholar]
  • Perronnet M., Jullien M., Bonnin D., Villieras F., Bruno G. Experimental study of the FoCa7 clay reactivity under a supply of metallic iron. 1. Determination of an iron/clay mass ratio threshold value for new crystallisation of Fe-rich 7 àphase like odinite. Submitted American Mineralogist. [Google Scholar]
  • Pusch, R., and Yong, R. (2003) Water saturation and retention of hydrophilic clay buffer-microstructural aspects. Applied Clay Science, 23, 61-68. [CrossRef] [Google Scholar]
  • Revil, A., and Leroy, P. (2004) Constitutive equations for ionic transport in porous shales. J. Geophys. Res., 109. [Google Scholar]
  • Reynolds, R.C. (1980) Interstratified Clay Minerals in Chemistry Clays and Clay Minerals, Mineralogical Society London. [Google Scholar]
  • Reynolds, R.C.J. (1992) X-ray diffraction studies of illite/smectite from rocks, <1µm randomly oriented powders, <1µm oriented powder aggregates: the absence of laboratoryinduced artifacts. Clays and Clay Minerals, 40, 387-396. [Google Scholar]
  • Robinet, J.C.,Rahbaoui, A.,Plas, F. and Lebon, P. (1996) A constitutive thermomechanical model for saturated clays. Engineering Geology, 41, 1-4, 145-169. [CrossRef] [Google Scholar]
  • Romero, E.,Gens, A. and Lloret, A. (1999) Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Engineering Geology, 54, 1-2, 117-127. [CrossRef] [Google Scholar]
  • Sammartino, S.,Bouchet, A.,Pret, D.,Parneix, J.C. and Tevissen, E. (2003) Spatial distribution of porosity and minerals in clay rocks from the Callovo-Oxfordian formation (Meuse/Haute-Marne, Eastern France) - Implications on ionic species diffusion and rock sorption capability. Applied Clay Science, 23, 1-4, 157-166. [CrossRef] [Google Scholar]
  • Sposito, G. and Prost, R. (1982) Structure of water adsorbed on smectites. Chemical Reviews, 82, 6, 552-573. [CrossRef] [Google Scholar]
  • Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals, 28, 401-411. [CrossRef] [Google Scholar]
  • Steefel, C.I. and Van Cappellen, P. (eds.) (1998) Reactive Transport modeling of natural systems. J. Hydrology, 209. [Google Scholar]
  • Trotignon, L., Fauré, M.H., Cranga, M. and Peycelon, H. (1998a) Numerical simulation of the interaction between granitic groundwater, engineered clay barrier and iron canister. In: Scientific Basis for Nuclear Waste Management XXII (Mater. Res. Soc. Proc. 556, Boston, 1998), 599-606. [Google Scholar]
  • Trotignon, L., Peycelon, H., Cranga, M. and Adenot, F. (1998b) Modelling of the interaction between an engineered clay barrier and concrete structure in a deep storage vault. In: Scientific Basis for Nuclear Waste Management XXII, (Mater. Res. Soc. Proc. 556, Boston, 1998), 607-614. [Google Scholar]
  • Trotignon, L., Didot, A., Bildstein, O., Lagneau, V. (2004) Numerical design of a 2-D clogging experiment in a porous medium, Oil & Gas Sci. Technol., this issue. [Google Scholar]
  • Van Damme, H. (1998) Structural hierarchy and molecular accessibility in clayey aggregates. In: Baveye, P., Parlange, J.Y., and Stewart, B.A. (eds.) Fractals in Soil Science, Boca Raton, CRC Press, 55-73. [Google Scholar]
  • Villar, M.V., 1999. Investigation of the behaviour of bentonite by means of suction-controlled oedometer tests. Engineering Geology, 54(1-2): 67-73. [CrossRef] [Google Scholar]
  • Yong, R.N., 1999. Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Engineering Geology, 54 (1-2): 3-13. [CrossRef] [Google Scholar]
  • Yong, R.N., 2003. Influence of microstructural features on water, ion diffusion and transport in clay soils. Applied Clay Science, 23(1-4): 3-13. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.