Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 1, January-February 2005
Dossier: IFP International Workshop "Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage"
Page(s) 107 - 120
Published online 01 December 2006
  • Bihannic, I.,Tchoubar, D.,Lyonnard, S.,Besson, G., and Thomas, F. (2001) X-ray scattering investigation of swelling clay fabric 1. The dry state, Journal of Colloid and Interface Science, 240, 211-218. [CrossRef] [PubMed] [Google Scholar]
  • Bouchet, A., Parneix, J. C. and Rassineux, F. (1993) Transformations des minéraux argileux au contact d’intrusions basaltiques récentes. Rapport ERM 93 036 AB 140. [Google Scholar]
  • Cranga, M., Trotignon L., Martial C. and Castelier, E. (1998) Simulation of the evolution of a clay engineered barrier by interaction with granitic groundwater: dynamics and characteristic timescales. In: Scientific Basis for Nuclear Waste Management XXI, (Mater. Res. Soc. Proc. 506, Davos, 1997) 629-636. [Google Scholar]
  • Dormieux, L.,Lemarchand, E., and Coussy, O. (2003) Macroscopic and micromechanical approaches to the modelling of the osmotic swelling in clays. Transport in Porous Media, 50, 75-91. [CrossRef] [Google Scholar]
  • Diaz, M.,Laperche, V.,Harsh, J. and Prost, R. (2002) Far infrared spectra of K+ in dioctahedral and trioctahedral mixedlayer minerals. American Mineralogist, 87, 1207-1214. [CrossRef] [Google Scholar]
  • Di Maio, C. (1996) Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 46, 4, 695-707. [CrossRef] [Google Scholar]
  • Ishii, M.,Shimanouchi, T. and Nakahira, M. (1967) Far infrared absorption of layer silicates, Inorg. Chimica Acta, 1, 387-392. [CrossRef] [Google Scholar]
  • Johnston, C.T.,Sposito, G. and Erickson, C. (1992) Vibrationnal probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40, 722-730. [CrossRef] [Google Scholar]
  • Kohler, E. (2001) Réactivité de mélanges synthétiques smectite/kaolinite et smectite/aluminium (gel) en présence d’un excès de fer (métal). Rapport de DRT de l’université d’Évry Val d’Essonne. [Google Scholar]
  • Kohler, E, Raynal, J and Jullien, M. "Illite and smectite formation in mixed-layered illite-smectite matrix heated by a basaltic intrusion: The case of argilites at Laumiere (Aveyron, France)". American Mineralogist, submitted. [Google Scholar]
  • Krohn, K.P. (2003) New conceptual models for the resaturation of bentonite. Applied Clay Science, 23, 25-33. [CrossRef] [Google Scholar]
  • Kubler, B. (1967) Stabilité et fidélité de mesures simples sur les diagrammes de rayons X. Bull. Groupe franç. argiles, 19, 39-45. [Google Scholar]
  • Kubler, B. and Jaboyedoff, M. (2000) Illite cristallinity. C.R. Acad. Sci. Paris, Science de la Terre et des Planètes, 331, 75-89. [CrossRef] [Google Scholar]
  • Lagneau, V., Trotignon, L., Van der Lee, J. and Soreau, P. Clogging of porous media due to geochemical reactions: column experiments and numerical simulations. Water Resour. Res. (in press). [Google Scholar]
  • Lanson, B. and Besson, G. (1992) Characterization of the end of smectite-to-illite transformation: decomposition of x-ray patterns. Clays and Clay Minerals, 40, 40-52. [CrossRef] [Google Scholar]
  • Lanson, B. and Bouchet, A. (1995) Identification des minéraux argileux par diffraction des rayons X: apport du traitement numérique. Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, 19, 91-118. [Google Scholar]
  • Lanson, B. and Velde, B. (1992) Decomposition of X-ray diffraction patterns: a convenient way to describe complex I/S diagenetic evolution. Clays and Clay Minerals, 40, 629-643. [CrossRef] [Google Scholar]
  • Lanson, B.,Velde, B. and Meunier, A. (1998) Late-stage diagenesis of illitic clay minerals as seen by decomposition of Xray diffraction patterns: Constrasted behaviors of sedimenary basins with different burial histories. Clays and Clay Minerals, 46, 69-78. [CrossRef] [Google Scholar]
  • Lantenois S., Plan殮 A., Jullien M., Muller F., Bauer A., Lanson B. (2003) Iron-smectites interactions in aqueous solution: a quantitative approach Euroclay 2003. 10th Conference of the European Clay Groups Association, 22-26 June, Modene, Italy. [Google Scholar]
  • Lantenois, S. (2003) Réactivité fer métal/smectites en milieu hydraté 80 °C. Thèse de doctorat, ISTO, université d’Orléans.. [Google Scholar]
  • Laperche, V. (1991) Étude de l’état et de la localisation des cations compensateurs dans les phyllosilicates. Thèse de l’université de Paris VII, UFR des sciences physiques de la Terre. [Google Scholar]
  • Leroy, P., and Revil, A. (2004) A triple-layer model of the surface electrochemical properties of clay minerals: Journal of Colloid and Interface Science, 270, 371-380. [CrossRef] [PubMed] [Google Scholar]
  • Lichtner P.C., Steefel C.I., Oelkers E.H. (eds.) (1996) Reactive transport in porous media. Reviews in Mineralogy, 34. [Google Scholar]
  • Loret, B.,Hueckel, T., and Gajo, A. (2002) Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays. International Journal of Solids and Structures, 39, 2773-2806. [Google Scholar]
  • Madejova, J.,Janek, M.,Komadel, P.,Herbert, H.J. and Moog, H.C. (2002) FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, 20, 255-271 [Google Scholar]
  • Marcial, D., Delage, P., and Cui, Y.J. (2002) Effect of exchangeable cations on the compressibility of bentonite clays. In: Di Maio, A., Hueckel, T., and Loret, B. (eds.) Chemo- Mechanical Coupling in Clays, June 27-30, Maratea, Italia, Swets and Zeitlinger B.V., Lisse, The Netherlands, 177-188. [Google Scholar]
  • Mathieu-Balster, I., and Sicard, J. (1999) Thermodynamics of irreversible processes applied to solute transport in non saturated porous media. Journal of Non-Equilibrium Thermodynamics, 24, 107-122. [CrossRef] [Google Scholar]
  • Moyne, C., and Murad, M. (2002a) Micromechanical computational modeling of hydration swelling of montmorillonite. In: Maio, A., Hueckel, T., and Loret, B. (eds.) Chemo-Mechanical Coupling in Clays, June 27-30, Maratea, Italia, Swets and Zeitlinger B.V., Lisse, The Netherlands, 121-134. [Google Scholar]
  • Moyne, C., and Murad, M.A. (2002b) Electro-chemo-mechanical couplings in swelling clays derived from a micro/macrohomogenization procedure. International Journal of Solids and Structures, 39, 6159-6190. [Google Scholar]
  • Norrish, K. (1954) The swelling of montmorillonite. Faraday Society of London, 18, 120-134. [CrossRef] [Google Scholar]
  • Papillon, F.,Jullien, M. and Bataillon, C. (2003) Carbon steel behaviour in compacted clay: two long term tests for corrosion prediction. In Prediction of the long term corrosion behaviour in nuclear waste systems. Féron and MacDonald Eds., European Federation of Corrosion Publications, 36, 439-454, Maney Publishing, UK. [Google Scholar]
  • Pelletier, M., de Donato, P., Thomas, F., Michot, L.J., Gérard, G. and Cases, J.M. (1997) 11th International Clay Conference, Clays for our Future, H. Kodama, A. R. Mermut, J.K. Torrance (eds.) ICC97 Publisher, 555-567. [Google Scholar]
  • Perronnet M., Jullien M., Bonnin D., Villieras F., Bruno G. Experimental study of the FoCa7 clay reactivity under a supply of metallic iron. 1. Determination of an iron/clay mass ratio threshold value for new crystallisation of Fe-rich 7 àphase like odinite. Submitted American Mineralogist. [Google Scholar]
  • Pusch, R., and Yong, R. (2003) Water saturation and retention of hydrophilic clay buffer-microstructural aspects. Applied Clay Science, 23, 61-68. [CrossRef] [Google Scholar]
  • Revil, A., and Leroy, P. (2004) Constitutive equations for ionic transport in porous shales. J. Geophys. Res., 109. [Google Scholar]
  • Reynolds, R.C. (1980) Interstratified Clay Minerals in Chemistry Clays and Clay Minerals, Mineralogical Society London. [Google Scholar]
  • Reynolds, R.C.J. (1992) X-ray diffraction studies of illite/smectite from rocks, <1µm randomly oriented powders, <1µm oriented powder aggregates: the absence of laboratoryinduced artifacts. Clays and Clay Minerals, 40, 387-396. [Google Scholar]
  • Robinet, J.C.,Rahbaoui, A.,Plas, F. and Lebon, P. (1996) A constitutive thermomechanical model for saturated clays. Engineering Geology, 41, 1-4, 145-169. [CrossRef] [Google Scholar]
  • Romero, E.,Gens, A. and Lloret, A. (1999) Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Engineering Geology, 54, 1-2, 117-127. [Google Scholar]
  • Sammartino, S.,Bouchet, A.,Pret, D.,Parneix, J.C. and Tevissen, E. (2003) Spatial distribution of porosity and minerals in clay rocks from the Callovo-Oxfordian formation (Meuse/Haute-Marne, Eastern France) - Implications on ionic species diffusion and rock sorption capability. Applied Clay Science, 23, 1-4, 157-166. [Google Scholar]
  • Sposito, G. and Prost, R. (1982) Structure of water adsorbed on smectites. Chemical Reviews, 82, 6, 552-573. [CrossRef] [Google Scholar]
  • Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals, 28, 401-411. [CrossRef] [Google Scholar]
  • Steefel, C.I. and Van Cappellen, P. (eds.) (1998) Reactive Transport modeling of natural systems. J. Hydrology, 209. [Google Scholar]
  • Trotignon, L., Fauré, M.H., Cranga, M. and Peycelon, H. (1998a) Numerical simulation of the interaction between granitic groundwater, engineered clay barrier and iron canister. In: Scientific Basis for Nuclear Waste Management XXII (Mater. Res. Soc. Proc. 556, Boston, 1998), 599-606. [Google Scholar]
  • Trotignon, L., Peycelon, H., Cranga, M. and Adenot, F. (1998b) Modelling of the interaction between an engineered clay barrier and concrete structure in a deep storage vault. In: Scientific Basis for Nuclear Waste Management XXII, (Mater. Res. Soc. Proc. 556, Boston, 1998), 607-614. [Google Scholar]
  • Trotignon, L., Didot, A., Bildstein, O., Lagneau, V. (2004) Numerical design of a 2-D clogging experiment in a porous medium, Oil & Gas Sci. Technol., this issue. [Google Scholar]
  • Van Damme, H. (1998) Structural hierarchy and molecular accessibility in clayey aggregates. In: Baveye, P., Parlange, J.Y., and Stewart, B.A. (eds.) Fractals in Soil Science, Boca Raton, CRC Press, 55-73. [Google Scholar]
  • Villar, M.V., 1999. Investigation of the behaviour of bentonite by means of suction-controlled oedometer tests. Engineering Geology, 54(1-2): 67-73. [CrossRef] [Google Scholar]
  • Yong, R.N., 1999. Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Engineering Geology, 54 (1-2): 3-13. [CrossRef] [Google Scholar]
  • Yong, R.N., 2003. Influence of microstructural features on water, ion diffusion and transport in clay soils. Applied Clay Science, 23(1-4): 3-13. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.