Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 59, Numéro 6, November-December 2004
Dossier: Which Fuels for Low-CO2 Engines?
Page(s) 593 - 609
Publié en ligne 1 décembre 2006
  • Abraham, J.,Bracco, F.V. and Reitz, R. D. (1985) Comparison of Computed and Measured Premixed Charge Engine Combustion. Combust. Flame, 60, 309. [CrossRef] [Google Scholar]
  • Béard, P., Colin, O. and Miche, M. (2003) Improved Modelling of DI Diesel Engines Using Sub-grid Descriptions of Spray and Combustion. SAE Paper 2003-01-0008. [Google Scholar]
  • Bilger, R.W. (1993) Conditional Moment Closure for Turbulent Reacting Flow. Phys. Fluids, A 5, 2, 436. [Google Scholar]
  • Bohbot, J., Zolver, M., Klahr, D. and Torres, A. (2003) Three Dimensional Modelling of Combustion in a Direct Injection Diesel Engine Using a New Unstructured Parallel Solver. Simulation and Modeling, in Computational Science and Its Applications - ICCSA 2003, Springer-Verlag, Berlin Heidelberg. [Google Scholar]
  • Boudier, P., Henriot, S., Poinsot, T. and Baritaud, T. (1992) A Model for Turbulent Flame Ignition and Propagation in Piston Engines. 24th Symposium (International) on Combustion, The Combustion Institute. [Google Scholar]
  • Candel, S. and Poinsot, T. (1990) Flame Stretch and the Balance Equation for the Flame Area. Combustion Science and Technology, 70, 1-15. [CrossRef] [Google Scholar]
  • Chalak, Z. (1990) Modélisation du délai d'auto-inflammation dans un moteur Diesel ; validation expérimentale. PhD Thesis, Rouen University. [Google Scholar]
  • Chen, C., Bardsley, M. and Johns, R. (2000) Two-Zone Flamelet Combustion Model. SAE Paper 2000-01-2810. [Google Scholar]
  • Colin, O,Benkenida, A. and Angelberger, C. (2003) A 3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines. Oil & Gas Science and Technology, Rev. IFP, 58, 1, 47-62. [Google Scholar]
  • Colin, O., Pires da Cruz, A. and Jay, S. (2004) Detailed Chemistry Based Auto-Ignition Model Including Low Temperature Phenomena Applied to 3D Engine Calculations. 30th Symposium (International) on Combustion, Pittsburgh, The Combustion Institute, 2649-2656. [Google Scholar]
  • Curran, H.J.,Gaffuri, P.,Pitz, W.J. and Westbrook, C.K. (1998) A Comprehensive Modeling Study of n-Heptane Oxidation. Combust. Flame, 114, 149. [CrossRef] [Google Scholar]
  • Dec, J.E. (2002) A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines. SAE Paper 2002-01-1309. [Google Scholar]
  • Docquier, N. (2003) Experimental Investigations in an Optical HCCI Diesel Engine. About the Influence of Fresh Charge Preparation and Composition on Auto-Ignition Delays and Combustion Development. 19th International Colloquium on the Dynamics of Explosions and Reactive Systems, Hakone, Japan, 27 July-1 August. [Google Scholar]
  • Duclos, J.M., Bruneaux, G. and Baritaud, T. (1996) 3D Modelling of Combustion and Pollutants in a 4Valve SI Engine: Effect of Fuel and Residuals Distribution and Spark Location. SAE Paper 961964. [Google Scholar]
  • Duclos, J.M. and Colin, O. (2001) Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculation. International Symposium COMODIA. [Google Scholar]
  • Duclos, J.M. and Zolver, M. (1998) 3D Modeling of Intake, Injection and Combustion in a DI-SI Engine under Homogeneous and Stratified Operating Conditions. International Symposium COMODIA. [Google Scholar]
  • Gicquel, O., Darabiha, N. and Thévenin, D. (2000) Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM with Differential Diffusion. 28st Symposium (International) on Combustion, Pittsburgh, The Combustion Institute. [Google Scholar]
  • Hasse, C., Bikas, G. and Peters, N. (2000) Modeling DI Diesel Combustion using the Eulerian Particle Flamelet Model (EPFM). SAE Paper 2000-01-2934. [Google Scholar]
  • Henriot, S., Bouyssounnouse, D. and Baritaud, T. (2003) Port Fuel Injection and Combustion Simulation of a Racing Engine. SAE Paper 2003-01-1845. [Google Scholar]
  • Heywood, J.B. (1988) Pollutant Formation and Control. In: Internal Combustion Engine Fundamentals, McGraw-Hill, Inc. [Google Scholar]
  • Kleemann, A.P., Menegazzi, P., Henriot, S. and Marchal, A. (2003) Numerical Study on Knock and SI Engine by Thermally Coupling Combustion Chamber and Cooling Circuit Simulations. SAE Paper 2003-01-0563. [Google Scholar]
  • Klimenko, A. and Yu, (1990) Multicomponent Diffusion of Various Admixtures in Turbulent Flow. Fluid Dynamics, 25, 327. [Google Scholar]
  • Kong, S.C., Han, Z. and Reitz, R.D. (1995) The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation. SAE Paper 950278. [Google Scholar]
  • Lafossas, F.A., Castagne, M., Dumas, J.P. and Henriot, S. (2002) Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD Code. SAE Paper 2002-01-2701. [Google Scholar]
  • Marble, F.E. and Broadwell, J.E. (1977) The Coherent Flame Model of Non-Premixed Turbulent Combustion. Projet Squid TRW-9-PU, Projet Squids Headquarters, Chaffee Hall, Purdue University. [Google Scholar]
  • Martinot, S., Béard, P. and Roesler, J. (2001) Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion. SAE Paper 2001-01-3684. [Google Scholar]
  • Peters, N. (1986) Laminar Flamelet Concepts in Turbulent Combustion. 21st Symposium (International) on Combustion, Pittsburgh, The Combustion Institute. [Google Scholar]
  • Pitsch, H., Wan, Y.P. and Peters N. (1995) Numerical Investigation of Soot Formation and Oxidation under Diesel Engine Conditions. SAE Paper 952357. [Google Scholar]
  • Pitsch, H., Chen, M. and Peters, N. (1998) Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames. 27th Symposium (International) on Combustion, Pittsburgh, The Combustion Institute. [Google Scholar]
  • Réveillé, B., Miche, M., Jay, S. and Henriot, S. (2004) Contribution of 3D CFD Tools to the Development and Understanding of Diesel Engines: Improving Today’s Engines and Designing Tomorrow’s Poser Units. SIA, Le Diesel : aujourd’hui et demain, École centrale de Lyon, 12-13th May. [Google Scholar]
  • Tap, F.A., Hilbert, R., Thévenin, D. and Veynante D. (2004) A Generalized Flame Surface Density Modelling Approach for the Auto-Ignition of a Turbulent Non-Premixed System. Combust. Theory Modelling, 8, 1, 163-193. [CrossRef] [Google Scholar]
  • Van Kalmthout, E., Veynante, D. and Candel, S. (1996) Direct Numerical Simulation Analysis of Flame Surface Density Equation in Non-premixed Turbulent Combustion. 26th Symposium (International) on Combustion, Pittsburgh, The Combustion Institute. [Google Scholar]
  • Vervish, L.,Hauguel, R.,Domingo, P. and Rullaud, M. (2004) Three Facets of Turbulent Combustion Modelling: DNS of Premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. Journal of Turbulence, 5, 004. [Google Scholar]
  • Veynante, D. and Vervisch, L. (2002) Turbulent Combustion Modeling. Progress in Energy and Combustion Science, 28, 93-266. [CrossRef] [Google Scholar]
  • Zhang et al. (2004) Multidimensional HCCI Modeling Using Complex Chemistry and Transported pdf’s. 30th Symposium (International) on Combustion, Pittsburgh, The Combustion Institute. [Google Scholar]
  • Zolver, M., Benkenida, A., Bohbot, J., Klahr, D. and Réveillé. B. (2004) CFD Tools at IFP for HCCI Engine Simulations. 14th International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress, Detroit, Michigan, 7 March. [Google Scholar]
  • Zolver, M., Bohbot, J., Klahr, D. and Torres, A. (2004) An Unstructured Parallel Solver for Multi-Phase and Reactive Flows in Internal Combustion Engines. Combustion Problems. In: Parallel Computational Fluid Dynamics, Elsevier BV, Amsterdam. [Google Scholar]
  • Zolver, M.,Klahr, D.,Bohbot, J.,Laget, O. and Torres, A. (2003) Reactive CFD in Engines with New Unstructured Parallel Solver. Oil & Gas Science and Technology, Rev. IFP, 58, 1, 33-46. [CrossRef] [EDP Sciences] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.