Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Numéro 5, September-October 2000
Page(s) 523 - 531
Publié en ligne 1 octobre 2006
  • Benedict, M.,Webb, G.B. and Rubin, L.C. (1940) An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their Mixtures. Chem. Eng. Progress, 47, 11, 571-578. [Google Scholar]
  • Campbell, S.W. and Thodos, G. (1985) Prediction of Saturated Liquid Densities and Critical Volumes for Polar and Nonpolar Substances. J. Chem. Eng. Data, 30, 102-111. [CrossRef] [Google Scholar]
  • Catchpole, O.J. and von Kamp, J.C. (1997) Phase Equilibrium for the Extraction of Squalene from Shark Liver Oil using Supercritical Carbon Dioxide. Ind. Eng. Chem. Res., 36, 3762-3768. [CrossRef] [Google Scholar]
  • Chemstations (1999) Process Flowsheet Simulator, ChemCAD III, Chemstations Inc., 2901 Wilcrest Dr., Suite 305, Houston, TX. [Google Scholar]
  • Danner, R.P. and Daubert, T.E. (1983) Chap. 4, in Manual for Predicting Chemical Process Design Data, AIChE, New York. [Google Scholar]
  • Jhaveri, B.S. and Youngren, G.K. (1984) Three Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions. 59th Annual Technical Conference and Exhibition, Houston, Sept. 16-19, SPE 13118. [Google Scholar]
  • Jingshan, T. and Xiaogong, W. (1986) The Equation of State Capable of Representing PVT Behavior of Saturated Vapor and Liquid. Proc. of the National Engineering Thermodynamic Conference, Beijing, 10, 21, 137-142 (in Chinese). [Google Scholar]
  • Martin, J.J. (1979) Cubic Equations of State—Which? Ind. Eng. Chem. Fundam., 18, 2, 81-97. [CrossRef] [Google Scholar]
  • Mathias, P.M.,Naheiri, T. and Oh, E.M. (1989) A Density Correction for the Peng Robinson Equation of State. Fluid Phase Equil., 47, 77-87. [CrossRef] [Google Scholar]
  • Mihajlov, A.,Djordjevic, B. and Tasic, A. (1981) Calculation of Enthalpy and Entropy of Gases by Modified R.K. Equation of State. Hungarian J. of Ind. Chem., 9, 407-416. [Google Scholar]
  • Patel, N.C. and Teja, A.S. (1982) A New Cubic Equation of State for Fluids and Fluid Mixtures. Chem. Eng. Sci., 37, 3, 463-473. [CrossRef] [Google Scholar]
  • Peneloux, A.,Rauzy, E. and Freze, R. (1982) A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equil., 8, 7-23. [Google Scholar]
  • Peng, D.Y. and Robinson, D.B. (1976) A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam., 15, 1, 59-64. [CrossRef] [Google Scholar]
  • Rackett, H.G. (1970) Equation of State for Saturated Liquids. J. Chem. Eng. Data, 15, 4, 514-517. [CrossRef] [Google Scholar]
  • Redlich, O. and Kwong, J.N.S. (1949) On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev., 44, 2, 233-244. [CrossRef] [PubMed] [Google Scholar]
  • Reid, R.C., Prausnitz, J.M. and Poling, B.E. (1987) The Properties of Gases and Liquids, McGraw-Hill Book Co., New York. [Google Scholar]
  • Schlunder, E.U. (ed.) (1983) Heat Exchanger Design Handbook, Vol. 5., Hemisphere Pub. Corp., New York. [Google Scholar]
  • Shah, P.N. and Yaws, C.L. (1976) Densities of Liquids. Chem. Eng., Oct. 25 (taken from Yaws, 1977). [Google Scholar]
  • Soave, G. (1972) Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci., 27, 1197-1203. [CrossRef] [Google Scholar]
  • Soave, G. (1984) Improvement of the van der Waals Equation of State. Chem. Eng., Sci., 39, 2, 357-369. [Google Scholar]
  • Soave, G. and Fredenslund, A. (1985) Development of an Equation of State Group Contribution Based Method. 8th Seminar on Applied Thermodynamics, Trieste. [Google Scholar]
  • Spencer, C.F. and Adler, S.B. (1978) A Critical Review of Equations for Predicting Saturated Liquid Density. J. Chem. Eng. Data, 23, 1, 82-89. [CrossRef] [Google Scholar]
  • Spencer, C.F. and Danner, R.P. (1972) Improved Equation for Prediction of Saturated Liquid Density. J. Chem. Eng. Data, 17, 236-241. [CrossRef] [Google Scholar]
  • Trebble, M.A. and Bishnoi, P.R. (1986) Accuracy and Consistency Comparisons of Ten Cubic Equations of State for Polar and Non- Polar Compounds. Fluid Phase Equil., 29, 465-474. [Google Scholar]
  • Valderrama, J.O. (1990) A Generalized Patel-Teja Equation of State for Polar and Nonpolar Fluids and Mixtures. J. Chem. Eng. Japan, 23, 1, 87-91. [Google Scholar]
  • Valderrama, J.O and Abu-Shark, B. (1989) Generalized Correlations for the Calculation of Density of Saturated Liquids and Petroleum Fractions. Fluid Phase Equil., 51, 87-100. [CrossRef] [Google Scholar]
  • Valderrama, J.O. and Cisternas, L.A. (1986) A Cubic Equation of State for Polar and Other Complex Mixtures. Fluid Phase Equil., 29, 431-438. [CrossRef] [Google Scholar]
  • Valderrama, J.O. and Cisternas, L.A. (1987) On the Choice of a Third (and Fourth) Generalizing Parameters for Equations of State. Chem. Eng. Sci., 42, 12, 2957-2961. [CrossRef] [Google Scholar]
  • Wilson, G.M. (1966) Calculation of Enthalpy Data from a Modified Redlich-Kwong Equation of State. Adv. Cryog. Eng., 11, 392-400. [Google Scholar]
  • Watson, P.,Cascella, M.,Salerno, S. and Tassios, D. (1986) Prediction of Vapor Pressures and Saturated Volumes with a Simple Cubic Equation of State: Part II: The van der Waals-711 EOS. Fluid Phase Equil., 27, 35-52. [CrossRef] [Google Scholar]
  • Yaws, C.L. (1977) Physical Properties, McGraw-Hill, New York. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.