Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Number 5, September-October 2000
Page(s) 523 - 531
DOI https://doi.org/10.2516/ogst:2000039
Published online 01 October 2006
  • Benedict, M.,Webb, G.B. and Rubin, L.C. (1940) An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their Mixtures. Chem. Eng. Progress, 47, 11, 571-578. [Google Scholar]
  • Campbell, S.W. and Thodos, G. (1985) Prediction of Saturated Liquid Densities and Critical Volumes for Polar and Nonpolar Substances. J. Chem. Eng. Data, 30, 102-111. [CrossRef] [Google Scholar]
  • Catchpole, O.J. and von Kamp, J.C. (1997) Phase Equilibrium for the Extraction of Squalene from Shark Liver Oil using Supercritical Carbon Dioxide. Ind. Eng. Chem. Res., 36, 3762-3768. [CrossRef] [Google Scholar]
  • Chemstations (1999) Process Flowsheet Simulator, ChemCAD III, Chemstations Inc., 2901 Wilcrest Dr., Suite 305, Houston, TX. [Google Scholar]
  • Danner, R.P. and Daubert, T.E. (1983) Chap. 4, in Manual for Predicting Chemical Process Design Data, AIChE, New York. [Google Scholar]
  • Jhaveri, B.S. and Youngren, G.K. (1984) Three Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions. 59th Annual Technical Conference and Exhibition, Houston, Sept. 16-19, SPE 13118. [Google Scholar]
  • Jingshan, T. and Xiaogong, W. (1986) The Equation of State Capable of Representing PVT Behavior of Saturated Vapor and Liquid. Proc. of the National Engineering Thermodynamic Conference, Beijing, 10, 21, 137-142 (in Chinese). [Google Scholar]
  • Martin, J.J. (1979) Cubic Equations of State—Which? Ind. Eng. Chem. Fundam., 18, 2, 81-97. [CrossRef] [Google Scholar]
  • Mathias, P.M.,Naheiri, T. and Oh, E.M. (1989) A Density Correction for the Peng Robinson Equation of State. Fluid Phase Equil., 47, 77-87. [CrossRef] [Google Scholar]
  • Mihajlov, A.,Djordjevic, B. and Tasic, A. (1981) Calculation of Enthalpy and Entropy of Gases by Modified R.K. Equation of State. Hungarian J. of Ind. Chem., 9, 407-416. [Google Scholar]
  • Patel, N.C. and Teja, A.S. (1982) A New Cubic Equation of State for Fluids and Fluid Mixtures. Chem. Eng. Sci., 37, 3, 463-473. [CrossRef] [Google Scholar]
  • Peneloux, A.,Rauzy, E. and Freze, R. (1982) A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equil., 8, 7-23. [Google Scholar]
  • Peng, D.Y. and Robinson, D.B. (1976) A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam., 15, 1, 59-64. [CrossRef] [Google Scholar]
  • Rackett, H.G. (1970) Equation of State for Saturated Liquids. J. Chem. Eng. Data, 15, 4, 514-517. [CrossRef] [Google Scholar]
  • Redlich, O. and Kwong, J.N.S. (1949) On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev., 44, 2, 233-244. [CrossRef] [PubMed] [Google Scholar]
  • Reid, R.C., Prausnitz, J.M. and Poling, B.E. (1987) The Properties of Gases and Liquids, McGraw-Hill Book Co., New York. [Google Scholar]
  • Schlunder, E.U. (ed.) (1983) Heat Exchanger Design Handbook, Vol. 5., Hemisphere Pub. Corp., New York. [Google Scholar]
  • Shah, P.N. and Yaws, C.L. (1976) Densities of Liquids. Chem. Eng., Oct. 25 (taken from Yaws, 1977). [Google Scholar]
  • Soave, G. (1972) Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci., 27, 1197-1203. [CrossRef] [Google Scholar]
  • Soave, G. (1984) Improvement of the van der Waals Equation of State. Chem. Eng., Sci., 39, 2, 357-369. [Google Scholar]
  • Soave, G. and Fredenslund, A. (1985) Development of an Equation of State Group Contribution Based Method. 8th Seminar on Applied Thermodynamics, Trieste. [Google Scholar]
  • Spencer, C.F. and Adler, S.B. (1978) A Critical Review of Equations for Predicting Saturated Liquid Density. J. Chem. Eng. Data, 23, 1, 82-89. [CrossRef] [Google Scholar]
  • Spencer, C.F. and Danner, R.P. (1972) Improved Equation for Prediction of Saturated Liquid Density. J. Chem. Eng. Data, 17, 236-241. [CrossRef] [Google Scholar]
  • Trebble, M.A. and Bishnoi, P.R. (1986) Accuracy and Consistency Comparisons of Ten Cubic Equations of State for Polar and Non- Polar Compounds. Fluid Phase Equil., 29, 465-474. [Google Scholar]
  • Valderrama, J.O. (1990) A Generalized Patel-Teja Equation of State for Polar and Nonpolar Fluids and Mixtures. J. Chem. Eng. Japan, 23, 1, 87-91. [Google Scholar]
  • Valderrama, J.O and Abu-Shark, B. (1989) Generalized Correlations for the Calculation of Density of Saturated Liquids and Petroleum Fractions. Fluid Phase Equil., 51, 87-100. [CrossRef] [Google Scholar]
  • Valderrama, J.O. and Cisternas, L.A. (1986) A Cubic Equation of State for Polar and Other Complex Mixtures. Fluid Phase Equil., 29, 431-438. [CrossRef] [Google Scholar]
  • Valderrama, J.O. and Cisternas, L.A. (1987) On the Choice of a Third (and Fourth) Generalizing Parameters for Equations of State. Chem. Eng. Sci., 42, 12, 2957-2961. [CrossRef] [Google Scholar]
  • Wilson, G.M. (1966) Calculation of Enthalpy Data from a Modified Redlich-Kwong Equation of State. Adv. Cryog. Eng., 11, 392-400. [Google Scholar]
  • Watson, P.,Cascella, M.,Salerno, S. and Tassios, D. (1986) Prediction of Vapor Pressures and Saturated Volumes with a Simple Cubic Equation of State: Part II: The van der Waals-711 EOS. Fluid Phase Equil., 27, 35-52. [CrossRef] [Google Scholar]
  • Yaws, C.L. (1977) Physical Properties, McGraw-Hill, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.