Dossier: Chemical Reactors, from Mock-up to Industriel Reactor: Diagnostic Methods - Rencontres Scientifiques IFP, Solaize, Dec. 1999
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Numéro 4, July-August 2000
Dossier: Chemical Reactors, from Mock-up to Industriel Reactor: Diagnostic Methods - Rencontres Scientifiques IFP, Solaize, Dec. 1999
Page(s) 359 - 393
DOI https://doi.org/10.2516/ogst:2000026
Publié en ligne 1 octobre 2006
  • Jager, B. and Espinoza, R. (1995) Advances in Low Temperature Fischer-Tropsch Synthesis. Catalysis Today, 23, 17-28. [CrossRef] [Google Scholar]
  • Jager, B. (1998) Developments in Fischer-Tropsch Technology. Studies in Surface Science and Catalysis, 119, 25-34. [CrossRef] [Google Scholar]
  • Eisenberg, B.,Fiato, R.A.,Mauldin, C.H.,Say, G.R. and Soled, S.L. (1998) Exxon’s Advanced Gas-to-Liquids Technology. Studies in Surface Science and Catalysis, 119, 943-948. [CrossRef] [Google Scholar]
  • Krishna, R. and Sie, S.T. (1994) Strategies for Multiphase Reactor Selection. Chem. Eng. Sci., 49, 4029-4065. [CrossRef] [Google Scholar]
  • Sie, S.T. (1998) Process Development and Scale up: IV. Case History of the Development of a Fischer-Tropsch Synthesis. Reviews in Chemical Engineering, 14, 109-157. [Google Scholar]
  • De Swart, J.W.A.,Krishna, R. and Sie, S.T. (1997) Selection, Design and Scale up of the Fischer-Tropsch Slurry Reactor. Studies in Surface Science and Catalysis, 107, 213-218. [CrossRef] [Google Scholar]
  • Deckwer, W.D. (1992) Bubble Column Reactors, John Wiley & Sons, New York. [Google Scholar]
  • Fan, L.S. (1989) Gas-Liquid-Solid Fluidization Engineering, Butterworths, Boston. [Google Scholar]
  • Vermeer, D.J. and Krishna, R. (1981) Hydrodynamics and Mass Transfer in Bubble Columns Operating in the Churn- Turbulent Regime. Ind. Eng. Chem. Process Design & Dev., 20, 475-482. [CrossRef] [Google Scholar]
  • Krishna, R.,Wilkinson, P.M. and Van Dierendonck, L.L. (1991) A Model for Gas Holdup in Bubble Columns Incorporating the Influence of Gas Density on Flow Regime Transitions. Chem. Eng. Sci., 46, 2491-2496. [CrossRef] [Google Scholar]
  • Hoefsloot, H.C.J. and Krishna, R. (1993) Influence of Gas Density of Flow Regime Transitions in Homogenous Flow in Bubble Columns. Ind. Eng. Chem. Research, 32, 747-750. [CrossRef] [Google Scholar]
  • Krishna, R.,Ellenberger, J. and Hennephof, D.E. (1993) Analogous Description of Gas-Solid Fluidized Beds and Bubble Columns. Chem. Eng. J., 53, 89-101. [Google Scholar]
  • Krishna, R., De Swart, J.W.A.,Hennephof, D.E.,Ellenberger, J. and Hoefsloot, H.C.J. (1994) Influence of Increased Gas Density on the Hydrodynamics of Bubble Column Reactors. AIChE J., 40, 112-119. [CrossRef] [Google Scholar]
  • Ellenberger, J. and Krishna, R. (1994) A Unified Approach to the Scale up of Gas-Solid Fluidized and Gas-Liquid Bubble Column Reactors. Chem. Eng. Sci., 49, 5391-5411. [CrossRef] [Google Scholar]
  • Krishna, R. and Ellenberger, J. (1995) A Unifed Approach to the Scale up of “Fluidized” Multiphase Reactors. Chem. Eng. Research & Design, Trans. I. Chem. E., 73, 217-221. [Google Scholar]
  • De Swart, J.W.A. and Krishna, R. (1995) Effect of Particles Concentration on the Hydrodynamics of Bubble Column Slurry Reactors. Chem. Eng. Research & Design, Trans. I. Chem. E., 73, 308-313. [Google Scholar]
  • Krishna, R.,Ellenberger, J. and Sie, S.T. (1996) Reactor Development for Conversion of Natural Gas to Liquid Fuels: A Scale up Strategy Relying on Hydrodynamic Analogies. Chem. Eng. Sci., 51, 2041-2050. [Google Scholar]
  • De Swart, J.W.A., van Vliet, R.E. and Krishna, R. (1996) Size, Structure and Dynamics of “Large” Bubbles in a 2-D Slurry Bubble Column. Chem. Eng. Sci., 51, 4619-4629. [CrossRef] [Google Scholar]
  • Krishna, R. and Ellenberger, J. (1996) Gas Holdup in Bubble Column Reactors Operating in the Churn-Turbulent Flow Regime. AIChE J., 42, 2627-2634. [CrossRef] [Google Scholar]
  • Krishna, R., de Swart, J.W.A.,Ellenberger, J.,Martina, G.B. and Maretto, C. (1997) Gas Holdup in Slurry Bubble Columns. AIChE J., 43, 311-316. [CrossRef] [Google Scholar]
  • Letzel, H.M.,Schouten, J.C., van den Bleek, C.M. and Krishna, R. (1997) Influence of Elevated Pressure on the Stability of Bubbly Flows. Chem. Eng. Sci., 52, 3733-3739. [CrossRef] [Google Scholar]
  • Letzel, H.M.,Schouten, J.C.,Krishna, R. and van den Bleek, C.M. (1997) Characterization of Regimes and Regime Transitions in Bubble Columns by Chaos Analysis of Pressure Signals. Chem. Eng. Sci., 52, 4447-4459. [CrossRef] [Google Scholar]
  • Sie, S.T. and Krishna, R. (1998) Process Development and Scale up: II. Catalyst Design Strategy. Reviews in Chemical Engineering, 14, 159-202. [Google Scholar]
  • Sie, S.T. and Krishna, R. (1998) Process Development and Scale up: III. Scale up and Scale down of Trickle Bed Processes. Reviews in Chemical Engineering, 14, 203-252. [Google Scholar]
  • Letzel, H.M.,Schouten, J.C., van den Bleek, C.M. and Krishna, R. (1998) Influence of Gas Density on the Large- Bubble Holdup in Bubble Column Reactors. AIChE J., 44, 2333-2336. [CrossRef] [Google Scholar]
  • Krishna, R., Van Baten, J.M. and Ellenberger, J. (1998) Scale Effects in Fluidized Multiphase Reactors. Powder Technology, 100, 137-146. [CrossRef] [Google Scholar]
  • Sie, S.T. and Krishna, R. (1999) Fundamentals and Selection of Advanced Fischer-Tropsch Reactors. Applied Catalysis A, 186, 55-70. [CrossRef] [Google Scholar]
  • Krishna, R.,Urseanu, M.I., Van Baten, J.M. and Ellenberger, J. (1999) Rise Velocity of a Swarm of Large Gas Bubbles in Liquids. Chem. Eng. Sci., 54, 171-183. [CrossRef] [MathSciNet] [Google Scholar]
  • Krishna, R. and van Baten, J.M. (1999) Simulating the Motion of Gas Bubbles in a Liquid. Nature, 398, 208. [CrossRef] [Google Scholar]
  • Krishna, R.,Urseanu, M.I. and Dreher, A. (2000) Gas Holdup in Bubble Columns: Influence of Alcohol Addition Versus Operation at Elevated Pressures. Chem. Eng. & Processing, 39, 371-378. [CrossRef] [Google Scholar]
  • Letzel, H.M.,Schouten, J.C., van den Bleek, C.M. and Krishna, R. (1999) Gas Holdup and Mass Transfer in Bubble Column Reactors Operated at Elevated Pressure. Chem. Eng. Sci., 54, 2237-2246. [CrossRef] [Google Scholar]
  • Krishna, R.,Ellenberger, J. and Maretto, C. (1999) Flow Regime Transition in Bubble Columns. Int. Commn. Heat Mass Transfer, 26, 467-475. [CrossRef] [MathSciNet] [Google Scholar]
  • Krishna, R.,Urseanu, M.I., Van Baten, J.M. and Ellenberger, J. (1999) Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent Regime: Experiments vs. Eulerian Simulations. Chem. Eng. Sci., 54, 4903-4911. [CrossRef] [Google Scholar]
  • Van der Laan, G.P.,Beenackers, A.A.C.M. and Krishna, R. (1999) Multicomponent Reaction Engineering Model for Fe- Catalysed Fischer-Tropsch Synthesis in Commercial Scale Bubble Column Slurry Reactors. Chem. Eng. Sci., 54, 5013-5019. [CrossRef] [Google Scholar]
  • Krishna, R.,Urseanu, M.I., Van Baten, J.M. and Ellenberger, J. (1999) Wall Effects on the Rise of Single Gas Bubbles in Liquids. Int. Commn. Heat Mass Transfer, 26, 781-790. [CrossRef] [Google Scholar]
  • Maretto, C. and Krishna, R. (1999) Modelling of a Bubble Column Slurry Reactor for Fischer-Tropsch Synthesis. Catalysis Today, 52, 279-289. [CrossRef] [Google Scholar]
  • Krishna, R. and van Baten, J.M. (1999) Rise Characteristics of Gas Bubbles in a 2D Rectangular Column: VOF Simulations vs. Experiments. Int. Commn. Heat Mass Transfer, 26, 965-974. [CrossRef] [Google Scholar]
  • Krishna, R., Van Baten, J.M. and Urseanu, M.I. (2000) Three-Phase Eulerian Simulations of Bubble Column Reactors Operating in the Churn-Turbulent Flow Regime: A Scale up Strategy. Chem. Eng. Sci., 55, 3275-3286. [CrossRef] [Google Scholar]
  • Akita, K. and Yoshida Y. (1973) Gas Holdup and Volumetric Mass-Transfer Coefficient in Bubble Columns. Ind. Eng. Chem. Process Des. Dev., 12, 76-80. [Google Scholar]
  • Bach, H.F. and Pilhofer, T. (1978) Variation of Gas Holdup in Bubble Columns with Physical Properties of Liquids and Operating Parameters of Columns. Ger. Chem. Eng., 1, 270-275. [Google Scholar]
  • Hikita, H.,Asai, S.,Tanigawa, K. and Kitao, M. (1980) Gas Holdup in Bubble Columns. Chem. Eng. J., 20, 59-67. [CrossRef] [Google Scholar]
  • Hughmark, G.A. (1967) Holdup and Mass Transfer in Bubble Columns. Ind. Eng. Chem. Process Des. Dev., 6, 218-220. [Google Scholar]
  • Hughmark, G.A. (1967) Holdup and Mass Transfer in Bubble Columns. Ind. Eng. Chem. Process Des. Dev., 6, 218-220. [CrossRef] [Google Scholar]
  • Reilly, I.G.,Scott, D.S., De Bruijn, T.J.W.,Jain, A.K. and Piskorz, J. (1986) A Correlation for Gas Holdup in Turbulent Bubble Column. Can. J. Chem. Eng., 64, 705-717. [CrossRef] [Google Scholar]
  • Wilkinson, P.M.,Spek, A.P. and Van Dierendonck, L.L. (1992) Design Parameters Estimation for Scale-up of High- Pressure Bubble Columns. AIChE J., 38, 544-554. [CrossRef] [Google Scholar]
  • Zehner, P. (1989) Mehrphasenströmungen in Gas- Flüssigkeits-Reaktoren. Dechema Monogr., 114, 215-233. [Google Scholar]
  • Clift, R., Grace, J.R. and Weber, M.E. (1978) Bubbles, Drops and Particles, Academic Press, San Diego. [Google Scholar]
  • Fan, L.S. and Tsuchiya, K. (1990) Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Butterworth- Heinemann, Boston. [Google Scholar]
  • Mendelson, H.D. (1967) The Prediction of Bubble Terminal Velocities from Wave Theory. AIChE J., 13, 250-253. [CrossRef] [Google Scholar]
  • Davies, R.M. and Taylor, G.I. (1950) The Mechanics of Large Bubbles Rising through Extended Liquids and through Liquids in Tubes. Proc. Roy. Soc. London, A200, 375-390. [Google Scholar]
  • Collins, R. (1967) The Effect of a Containing Cylindrical Boundary on the Velocity of a Large Gas Bubble in a Liquid. J. Fluid Mech., 28, 97-112. [CrossRef] [Google Scholar]
  • Richardson, J.F. and Zaki, W.N. (1954) Sedimentation and Fluidisation: Part I. Trans. Inst. Chem. Eng., 32, 35-53. [Google Scholar]
  • Harmathy, T.J. (1960) Velocity of Large Drops and Bubbles in Media of Infinite or Restricted Extent. AIChE J., 6, 281-288. [CrossRef] [Google Scholar]
  • Reilly, I.G.,Scott, D.S., De Bruijn, T.J.W. and MacIntyre, D. (1994) The Role of Gas Phase Momentum in Determining Gas Holdup and Hydrodynamic Flow Regimes in Bubble Column Operations. Can. J. Chem. Eng., 72, 3-12. [CrossRef] [MathSciNet] [Google Scholar]
  • Bernemann, K. (1989) Zur Fluiddynamik und zum Vermischungsverhalten der flüssigen Phase in Blasensäulen mit längsangeströmten Rohrbundeln. PhD Thesis, University Dortmund. [Google Scholar]
  • Joshi, J.B. (1980) Axial Mixing in Multiphase Contactors– A Unified Correlation. Trans. Inst. Chem. Eng., 58, 155-165. [Google Scholar]
  • Kawase, Y. and Moo-Young, M. (1989) Turbulent Intensity in Bubble Column. Chem. Eng. J., 40, 55-58. [CrossRef] [MathSciNet] [Google Scholar]
  • Nottenkämper, R.,Steiff, A. and Weinspach, P.M. (1983) Experimental Investigation of Hydrodynamics of Bubble Columns. Ger. Chem. Eng., 6, 147-155. [Google Scholar]
  • Ohki, Y. and Inoue, H. (1970) Longitudinal Mixing of the Liquid Phase in Bubble Columns. Chem. Eng. Sci., 25, 1-16. [CrossRef] [MathSciNet] [Google Scholar]
  • Riquarts, H.P. (1981) Strömungsprofile, Impulsaustausch und Durchmischung der flüssigen Phase in Bläsensaulen. Chem. Ing. Techn., 53, 60-61. [CrossRef] [Google Scholar]
  • Ueyama, K. and Miyauchi, T. (1979) Properties of Recirculating Turbulent Two Phase Flow in Gas Bubble Columns. AIChE J., 25, 258-266. [CrossRef] [Google Scholar]
  • Ulbrecht, J.J.,Kawase, Y. and Auyeung, K.F. (1985) More on Mixing of Viscous Liquids in Bubble Columns. Chem. Eng. Commun., 35, 175-191. [CrossRef] [Google Scholar]
  • Zehner, P. (1982) Impuls-, Stoff- und Wärmetransport in Blasensäulen. Teil 1: Strömungsmodell der Blasensäule und Flüssigkeitsgeschwindigkeiten. Verfahrenstechnik, 16, 347-351. [Google Scholar]
  • Baird, M.H.I. and Rice, R.G. (1975) Axial Dispersion in Large Unbaffled Columns. Chem. Eng. J., 9, 171-174. Deckwer, W.D., Burckhart, R. and Zoll, G. (1974) Mixing and Mass Transfer in Tall Bubble Columns. Chem. Eng. Sci., 29, 2177-2188. [Google Scholar]
  • Towell, G.D. and Ackerman, G.H. (1972) Axial Mixing of Liquids and Gas in Large Bubble Reactor. Proc. of 2nd International Symposium Chem. React. Eng., Amsterdam, The Netherlands, B3.1-B3.13. [Google Scholar]
  • Wendt, R.,Steiff, A. and Weinspach, P.M. (1984) Liquid Phase Dispersion in Bubble Columns. Ger. Chem. Eng., 7, 267-273. [Google Scholar]
  • Deckwer, W.D.,Serpemen, Y.,Ralek, M. and Schmidt, B. (1982) Modeling the Fischer-Tropsch Synthesis in the Slurry Phase. Ind. Eng. Chem. Process Des. Dev., 21, 231-241. [CrossRef] [Google Scholar]
  • Fan, L.S.,Yang, G.Q.,Lee, D.J.,Tsuchiya, K. and Luo, X. (1999) Some Aspects of High-Pressure Phenomena of Bubbles in Liquids and Liquid-Solid Suspensions. Chem. Eng. Sci., 54, 4681-4709. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.