Dossier: Chemical Reactors, from Mock-up to Industriel Reactor: Diagnostic Methods - Rencontres Scientifiques IFP, Solaize, Dec. 1999
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Number 4, July-August 2000
Dossier: Chemical Reactors, from Mock-up to Industriel Reactor: Diagnostic Methods - Rencontres Scientifiques IFP, Solaize, Dec. 1999
Page(s) 359 - 393
DOI https://doi.org/10.2516/ogst:2000026
Published online 01 October 2006
  • Jager, B. and Espinoza, R. (1995) Advances in Low Temperature Fischer-Tropsch Synthesis. Catalysis Today, 23, 17-28. [CrossRef] [Google Scholar]
  • Jager, B. (1998) Developments in Fischer-Tropsch Technology. Studies in Surface Science and Catalysis, 119, 25-34. [CrossRef] [Google Scholar]
  • Eisenberg, B.,Fiato, R.A.,Mauldin, C.H.,Say, G.R. and Soled, S.L. (1998) Exxon’s Advanced Gas-to-Liquids Technology. Studies in Surface Science and Catalysis, 119, 943-948. [CrossRef] [Google Scholar]
  • Krishna, R. and Sie, S.T. (1994) Strategies for Multiphase Reactor Selection. Chem. Eng. Sci., 49, 4029-4065. [CrossRef] [Google Scholar]
  • Sie, S.T. (1998) Process Development and Scale up: IV. Case History of the Development of a Fischer-Tropsch Synthesis. Reviews in Chemical Engineering, 14, 109-157. [Google Scholar]
  • De Swart, J.W.A.,Krishna, R. and Sie, S.T. (1997) Selection, Design and Scale up of the Fischer-Tropsch Slurry Reactor. Studies in Surface Science and Catalysis, 107, 213-218. [CrossRef] [Google Scholar]
  • Deckwer, W.D. (1992) Bubble Column Reactors, John Wiley & Sons, New York. [Google Scholar]
  • Fan, L.S. (1989) Gas-Liquid-Solid Fluidization Engineering, Butterworths, Boston. [Google Scholar]
  • Vermeer, D.J. and Krishna, R. (1981) Hydrodynamics and Mass Transfer in Bubble Columns Operating in the Churn- Turbulent Regime. Ind. Eng. Chem. Process Design & Dev., 20, 475-482. [CrossRef] [Google Scholar]
  • Krishna, R.,Wilkinson, P.M. and Van Dierendonck, L.L. (1991) A Model for Gas Holdup in Bubble Columns Incorporating the Influence of Gas Density on Flow Regime Transitions. Chem. Eng. Sci., 46, 2491-2496. [CrossRef] [Google Scholar]
  • Hoefsloot, H.C.J. and Krishna, R. (1993) Influence of Gas Density of Flow Regime Transitions in Homogenous Flow in Bubble Columns. Ind. Eng. Chem. Research, 32, 747-750. [CrossRef] [Google Scholar]
  • Krishna, R.,Ellenberger, J. and Hennephof, D.E. (1993) Analogous Description of Gas-Solid Fluidized Beds and Bubble Columns. Chem. Eng. J., 53, 89-101. [Google Scholar]
  • Krishna, R., De Swart, J.W.A.,Hennephof, D.E.,Ellenberger, J. and Hoefsloot, H.C.J. (1994) Influence of Increased Gas Density on the Hydrodynamics of Bubble Column Reactors. AIChE J., 40, 112-119. [CrossRef] [Google Scholar]
  • Ellenberger, J. and Krishna, R. (1994) A Unified Approach to the Scale up of Gas-Solid Fluidized and Gas-Liquid Bubble Column Reactors. Chem. Eng. Sci., 49, 5391-5411. [CrossRef] [Google Scholar]
  • Krishna, R. and Ellenberger, J. (1995) A Unifed Approach to the Scale up of “Fluidized” Multiphase Reactors. Chem. Eng. Research & Design, Trans. I. Chem. E., 73, 217-221. [Google Scholar]
  • De Swart, J.W.A. and Krishna, R. (1995) Effect of Particles Concentration on the Hydrodynamics of Bubble Column Slurry Reactors. Chem. Eng. Research & Design, Trans. I. Chem. E., 73, 308-313. [Google Scholar]
  • Krishna, R.,Ellenberger, J. and Sie, S.T. (1996) Reactor Development for Conversion of Natural Gas to Liquid Fuels: A Scale up Strategy Relying on Hydrodynamic Analogies. Chem. Eng. Sci., 51, 2041-2050. [Google Scholar]
  • De Swart, J.W.A., van Vliet, R.E. and Krishna, R. (1996) Size, Structure and Dynamics of “Large” Bubbles in a 2-D Slurry Bubble Column. Chem. Eng. Sci., 51, 4619-4629. [CrossRef] [Google Scholar]
  • Krishna, R. and Ellenberger, J. (1996) Gas Holdup in Bubble Column Reactors Operating in the Churn-Turbulent Flow Regime. AIChE J., 42, 2627-2634. [CrossRef] [Google Scholar]
  • Krishna, R., de Swart, J.W.A.,Ellenberger, J.,Martina, G.B. and Maretto, C. (1997) Gas Holdup in Slurry Bubble Columns. AIChE J., 43, 311-316. [CrossRef] [Google Scholar]
  • Letzel, H.M.,Schouten, J.C., van den Bleek, C.M. and Krishna, R. (1997) Influence of Elevated Pressure on the Stability of Bubbly Flows. Chem. Eng. Sci., 52, 3733-3739. [CrossRef] [Google Scholar]
  • Letzel, H.M.,Schouten, J.C.,Krishna, R. and van den Bleek, C.M. (1997) Characterization of Regimes and Regime Transitions in Bubble Columns by Chaos Analysis of Pressure Signals. Chem. Eng. Sci., 52, 4447-4459. [CrossRef] [Google Scholar]
  • Sie, S.T. and Krishna, R. (1998) Process Development and Scale up: II. Catalyst Design Strategy. Reviews in Chemical Engineering, 14, 159-202. [Google Scholar]
  • Sie, S.T. and Krishna, R. (1998) Process Development and Scale up: III. Scale up and Scale down of Trickle Bed Processes. Reviews in Chemical Engineering, 14, 203-252. [Google Scholar]
  • Letzel, H.M.,Schouten, J.C., van den Bleek, C.M. and Krishna, R. (1998) Influence of Gas Density on the Large- Bubble Holdup in Bubble Column Reactors. AIChE J., 44, 2333-2336. [CrossRef] [Google Scholar]
  • Krishna, R., Van Baten, J.M. and Ellenberger, J. (1998) Scale Effects in Fluidized Multiphase Reactors. Powder Technology, 100, 137-146. [CrossRef] [Google Scholar]
  • Sie, S.T. and Krishna, R. (1999) Fundamentals and Selection of Advanced Fischer-Tropsch Reactors. Applied Catalysis A, 186, 55-70. [CrossRef] [Google Scholar]
  • Krishna, R.,Urseanu, M.I., Van Baten, J.M. and Ellenberger, J. (1999) Rise Velocity of a Swarm of Large Gas Bubbles in Liquids. Chem. Eng. Sci., 54, 171-183. [CrossRef] [MathSciNet] [Google Scholar]
  • Krishna, R. and van Baten, J.M. (1999) Simulating the Motion of Gas Bubbles in a Liquid. Nature, 398, 208. [CrossRef] [Google Scholar]
  • Krishna, R.,Urseanu, M.I. and Dreher, A. (2000) Gas Holdup in Bubble Columns: Influence of Alcohol Addition Versus Operation at Elevated Pressures. Chem. Eng. & Processing, 39, 371-378. [CrossRef] [Google Scholar]
  • Letzel, H.M.,Schouten, J.C., van den Bleek, C.M. and Krishna, R. (1999) Gas Holdup and Mass Transfer in Bubble Column Reactors Operated at Elevated Pressure. Chem. Eng. Sci., 54, 2237-2246. [CrossRef] [Google Scholar]
  • Krishna, R.,Ellenberger, J. and Maretto, C. (1999) Flow Regime Transition in Bubble Columns. Int. Commn. Heat Mass Transfer, 26, 467-475. [CrossRef] [MathSciNet] [Google Scholar]
  • Krishna, R.,Urseanu, M.I., Van Baten, J.M. and Ellenberger, J. (1999) Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent Regime: Experiments vs. Eulerian Simulations. Chem. Eng. Sci., 54, 4903-4911. [CrossRef] [Google Scholar]
  • Van der Laan, G.P.,Beenackers, A.A.C.M. and Krishna, R. (1999) Multicomponent Reaction Engineering Model for Fe- Catalysed Fischer-Tropsch Synthesis in Commercial Scale Bubble Column Slurry Reactors. Chem. Eng. Sci., 54, 5013-5019. [CrossRef] [Google Scholar]
  • Krishna, R.,Urseanu, M.I., Van Baten, J.M. and Ellenberger, J. (1999) Wall Effects on the Rise of Single Gas Bubbles in Liquids. Int. Commn. Heat Mass Transfer, 26, 781-790. [CrossRef] [Google Scholar]
  • Maretto, C. and Krishna, R. (1999) Modelling of a Bubble Column Slurry Reactor for Fischer-Tropsch Synthesis. Catalysis Today, 52, 279-289. [CrossRef] [Google Scholar]
  • Krishna, R. and van Baten, J.M. (1999) Rise Characteristics of Gas Bubbles in a 2D Rectangular Column: VOF Simulations vs. Experiments. Int. Commn. Heat Mass Transfer, 26, 965-974. [CrossRef] [Google Scholar]
  • Krishna, R., Van Baten, J.M. and Urseanu, M.I. (2000) Three-Phase Eulerian Simulations of Bubble Column Reactors Operating in the Churn-Turbulent Flow Regime: A Scale up Strategy. Chem. Eng. Sci., 55, 3275-3286. [CrossRef] [Google Scholar]
  • Akita, K. and Yoshida Y. (1973) Gas Holdup and Volumetric Mass-Transfer Coefficient in Bubble Columns. Ind. Eng. Chem. Process Des. Dev., 12, 76-80. [Google Scholar]
  • Bach, H.F. and Pilhofer, T. (1978) Variation of Gas Holdup in Bubble Columns with Physical Properties of Liquids and Operating Parameters of Columns. Ger. Chem. Eng., 1, 270-275. [Google Scholar]
  • Hikita, H.,Asai, S.,Tanigawa, K. and Kitao, M. (1980) Gas Holdup in Bubble Columns. Chem. Eng. J., 20, 59-67. [CrossRef] [Google Scholar]
  • Hughmark, G.A. (1967) Holdup and Mass Transfer in Bubble Columns. Ind. Eng. Chem. Process Des. Dev., 6, 218-220. [Google Scholar]
  • Hughmark, G.A. (1967) Holdup and Mass Transfer in Bubble Columns. Ind. Eng. Chem. Process Des. Dev., 6, 218-220. [CrossRef] [Google Scholar]
  • Reilly, I.G.,Scott, D.S., De Bruijn, T.J.W.,Jain, A.K. and Piskorz, J. (1986) A Correlation for Gas Holdup in Turbulent Bubble Column. Can. J. Chem. Eng., 64, 705-717. [CrossRef] [Google Scholar]
  • Wilkinson, P.M.,Spek, A.P. and Van Dierendonck, L.L. (1992) Design Parameters Estimation for Scale-up of High- Pressure Bubble Columns. AIChE J., 38, 544-554. [CrossRef] [Google Scholar]
  • Zehner, P. (1989) Mehrphasenströmungen in Gas- Flüssigkeits-Reaktoren. Dechema Monogr., 114, 215-233. [Google Scholar]
  • Clift, R., Grace, J.R. and Weber, M.E. (1978) Bubbles, Drops and Particles, Academic Press, San Diego. [Google Scholar]
  • Fan, L.S. and Tsuchiya, K. (1990) Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Butterworth- Heinemann, Boston. [Google Scholar]
  • Mendelson, H.D. (1967) The Prediction of Bubble Terminal Velocities from Wave Theory. AIChE J., 13, 250-253. [CrossRef] [Google Scholar]
  • Davies, R.M. and Taylor, G.I. (1950) The Mechanics of Large Bubbles Rising through Extended Liquids and through Liquids in Tubes. Proc. Roy. Soc. London, A200, 375-390. [Google Scholar]
  • Collins, R. (1967) The Effect of a Containing Cylindrical Boundary on the Velocity of a Large Gas Bubble in a Liquid. J. Fluid Mech., 28, 97-112. [CrossRef] [Google Scholar]
  • Richardson, J.F. and Zaki, W.N. (1954) Sedimentation and Fluidisation: Part I. Trans. Inst. Chem. Eng., 32, 35-53. [Google Scholar]
  • Harmathy, T.J. (1960) Velocity of Large Drops and Bubbles in Media of Infinite or Restricted Extent. AIChE J., 6, 281-288. [CrossRef] [Google Scholar]
  • Reilly, I.G.,Scott, D.S., De Bruijn, T.J.W. and MacIntyre, D. (1994) The Role of Gas Phase Momentum in Determining Gas Holdup and Hydrodynamic Flow Regimes in Bubble Column Operations. Can. J. Chem. Eng., 72, 3-12. [CrossRef] [MathSciNet] [Google Scholar]
  • Bernemann, K. (1989) Zur Fluiddynamik und zum Vermischungsverhalten der flüssigen Phase in Blasensäulen mit längsangeströmten Rohrbundeln. PhD Thesis, University Dortmund. [Google Scholar]
  • Joshi, J.B. (1980) Axial Mixing in Multiphase Contactors– A Unified Correlation. Trans. Inst. Chem. Eng., 58, 155-165. [Google Scholar]
  • Kawase, Y. and Moo-Young, M. (1989) Turbulent Intensity in Bubble Column. Chem. Eng. J., 40, 55-58. [CrossRef] [MathSciNet] [Google Scholar]
  • Nottenkämper, R.,Steiff, A. and Weinspach, P.M. (1983) Experimental Investigation of Hydrodynamics of Bubble Columns. Ger. Chem. Eng., 6, 147-155. [Google Scholar]
  • Ohki, Y. and Inoue, H. (1970) Longitudinal Mixing of the Liquid Phase in Bubble Columns. Chem. Eng. Sci., 25, 1-16. [CrossRef] [MathSciNet] [Google Scholar]
  • Riquarts, H.P. (1981) Strömungsprofile, Impulsaustausch und Durchmischung der flüssigen Phase in Bläsensaulen. Chem. Ing. Techn., 53, 60-61. [CrossRef] [Google Scholar]
  • Ueyama, K. and Miyauchi, T. (1979) Properties of Recirculating Turbulent Two Phase Flow in Gas Bubble Columns. AIChE J., 25, 258-266. [CrossRef] [Google Scholar]
  • Ulbrecht, J.J.,Kawase, Y. and Auyeung, K.F. (1985) More on Mixing of Viscous Liquids in Bubble Columns. Chem. Eng. Commun., 35, 175-191. [CrossRef] [Google Scholar]
  • Zehner, P. (1982) Impuls-, Stoff- und Wärmetransport in Blasensäulen. Teil 1: Strömungsmodell der Blasensäule und Flüssigkeitsgeschwindigkeiten. Verfahrenstechnik, 16, 347-351. [Google Scholar]
  • Baird, M.H.I. and Rice, R.G. (1975) Axial Dispersion in Large Unbaffled Columns. Chem. Eng. J., 9, 171-174. Deckwer, W.D., Burckhart, R. and Zoll, G. (1974) Mixing and Mass Transfer in Tall Bubble Columns. Chem. Eng. Sci., 29, 2177-2188. [Google Scholar]
  • Towell, G.D. and Ackerman, G.H. (1972) Axial Mixing of Liquids and Gas in Large Bubble Reactor. Proc. of 2nd International Symposium Chem. React. Eng., Amsterdam, The Netherlands, B3.1-B3.13. [Google Scholar]
  • Wendt, R.,Steiff, A. and Weinspach, P.M. (1984) Liquid Phase Dispersion in Bubble Columns. Ger. Chem. Eng., 7, 267-273. [Google Scholar]
  • Deckwer, W.D.,Serpemen, Y.,Ralek, M. and Schmidt, B. (1982) Modeling the Fischer-Tropsch Synthesis in the Slurry Phase. Ind. Eng. Chem. Process Des. Dev., 21, 231-241. [CrossRef] [Google Scholar]
  • Fan, L.S.,Yang, G.Q.,Lee, D.J.,Tsuchiya, K. and Luo, X. (1999) Some Aspects of High-Pressure Phenomena of Bubbles in Liquids and Liquid-Solid Suspensions. Chem. Eng. Sci., 54, 4681-4709. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.