Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Numéro 3, May-June 2000
Page(s) 259 - 268
Publié en ligne 1 octobre 2006
  • Ali, U.K., McGauley, P.J. and Wilson, C.J. (1997) The Effects of High-Velocity Flow and PVT Changes near the Wellbore on Condensate Well Performance. SPE 38923, 823-838. [Google Scholar]
  • Bear, J. (1972) Dynamics of Fluids in Porous Media. American Elsevier Publishing Company Inc. [Google Scholar]
  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena, J. Wiley & Sons Inc. [Google Scholar]
  • Blom, S.M.P. and Hagoort, J. (1998) The Combined Effect of Near-Critical Relative Permeability and Non-Darcy Flow on Well Impairment by Condensate Drop-out. SPE 39976, 1-12. [Google Scholar]
  • Brooks, R.H. and Corey, A.T. (1966) Properties of Porous Media Affecting Fluid Flow. J. Irrig. Drainage Division, Proc. Amer. Soc. Civil Eng., 92, 61-87. [Google Scholar]
  • Buchlin, J.M. and Stubos, A. (1987) Phase Change Phenomena at Liquid Saturated Self Heated Particulate Beds, in Modeling and Applications of Transport Phenomena in Porous Media, Bear, J. and Buchlin, J.M. (eds.), Kluwer Acad. Pub. [Google Scholar]
  • Chauveteau, G. and Thirriot, C. (1967) Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La Houille Blanche, 22, 1, 1-8. [Google Scholar]
  • Corey, A.T. (1954) The Interelationship between Gas and Oil Relative Permeabilities. Producer’s Monthly, 19, 1, 38-41. [Google Scholar]
  • Cornell, D. and Katz, D.L. (1953) Flow of Gases through Consolidated Porous Media. Ind. Eng. Chem., 45, 2145-2153. [CrossRef] [Google Scholar]
  • Darcy, H. (1856) Les fontaines publiques de la ville de Dijon, Dalmont. [Google Scholar]
  • Dullien, F.A.L. (1992) Porous Media–Fluid Transport and Pore Structure, Academic Press, Inc. [Google Scholar]
  • Ergun, S. (1952) Fluid Flow through Packed Columns. Chem. Eng. Progr., 48, 2, 89-94. [Google Scholar]
  • Evans, E.V. and Evans, R.D. (1986) The Influence of an Immobile or Mobile Saturation upon Non-Darcy Compressible Flow of Real Gases in Propped Fractures. SPE 15066, 181-195. [Google Scholar]
  • Evans, R.D., Hudson, C.S. and Greenlee, J.E. (1987) The Effect of an Immobile Liquid Saturation on the Non-Darcy Flow Coefficient in Porous Media, SPE Production Engineering, 331-338. [Google Scholar]
  • Forchheimer, P. (1914) Chap. 15, in Hydraulik, Teubner. [Google Scholar]
  • Fourar, M.,Bories, S.,Lenormand, R. and Persoff, P. (1993) Two-Phase Flow in Smooth and Rough Fractures: Measurement and Correlation by Porous-Media and Pipe-Flow Models. Water Resources Research, 29, 11, 3699-3708. [CrossRef] [Google Scholar]
  • Fourar, M. and Lenormand, R. (1998) A Viscous Coupling Model for Relative Permeabilities in Fractures. SPE 49006, 253-258. [Google Scholar]
  • Geertsma, J. (1974) Estimating the Coefficient of Inertial Resistance Fluid Flow through Porous Media. SPE 4706, 445-450. [Google Scholar]
  • Hubbert, M.K. (1956) Darcy Law and the Field Equations of the Flow of Underground Fluids. Trans. Amer. Inst. Min. Mandal. Eng., 207, 222-239. [Google Scholar]
  • Kouamé. (1989) Étude expérimentale d’écoulements diphasiques en fracture. Ph.D. Thesis, Inst. Nat. Poly. Toulouse. [Google Scholar]
  • Lee, H.S. and Catton, I. (1984) Two-Phase Flow in Stratified Porous Media. 6th Information Exchange Meanding on Debris Coolability, Los Angeles. [Google Scholar]
  • Lindquist, E. (1933) On the Flow of Water through Porous Soil. Premier Congr籠des grands barrages, Stockholm, 5, 81-101. [MathSciNet] [Google Scholar]
  • Lipinski, R.J. (1980) A Particle Bed Dryout Model with Upward and Downward Boiling. Trans. Am. Nucl. Soc., 35, 350-358. [Google Scholar]
  • Lipinski, R.J. (1981) A One-Dimensional Particle Bed Dryout Model. Trans. Am. Nucl. Soc., 38, 386-387. [Google Scholar]
  • Lipinski, R.J. (1982) A Model for Boiling and Dryout in Particle Beds. Report SAND 82-0756 (NUREG/CR-2646), Sandia Labs. [Google Scholar]
  • Lockhart, R.W. and Martinelli, R.C. (1949) Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Progr., 45, 39-48. [Google Scholar]
  • Mahoney, D. and Doggandt, K. (1997) Multiphase Flow in Fractures. Proc. of the Meanding of the Sociandy of Core Analysts, Calgary, Canada. [Google Scholar]
  • Marle, C.M. (1981) Multiphase Flow in Porous Media, Gulf Publishing Co. [Google Scholar]
  • Martins, J.P., Milton-Taylor, D. and Leung, H.K. (1990) The Effects of Non-Darcy Flow in Propped Hydraulic Fractures. SPE 20709, 899-913. [Google Scholar]
  • Merrill, L.S. (1975) Two-Phase Flow in Fractures. Ph.D. Thesis, University of Denver. [Google Scholar]
  • Midoux, N.,Favier, M. and Charpentier, J.C. (1976) Flow Pattern, Pressure Loss and Liquid Holdup Data in Gas-Liquid Downflow Packed Beds with Foaming and Nonfoaming Hydrocarbons. J. Chem. Eng. Japan, 9, 5, 350-356. [CrossRef] [Google Scholar]
  • Narayanaswamy, G., Sharma, M.M. and Pope, G.A. (1998) Effect of Heterogeneity on the Non-Darcy Flow Coefficient. SPE 39979, 215-226. [Google Scholar]
  • Neasham, J.W. (1977) The Morphology of Dispersed Clay in Sandstone Reservoirs and its Effects on Sandstone Shaliness, Pore Space and Fluid Flow Properties. 52nd Anual Fall Meanding of the SPE, Colorado, Oct. 9-12, SPE 6858. [Google Scholar]
  • Noman, R. and Archer, J.S. (1987) The Effect of Pore Structure on Non-Darcy Gas Flow in some Low Permeability Reservoir Rocks. SPE 16400, 103-110. [Google Scholar]
  • Persoff, P. and Pruess, K. (1995) Two-Phase Flow Visualization and Relative Permeability Measurement in Natural Rough- Walled Rock Fractures. Water Resources Research, 31, 5, 1175-1186. [CrossRef] [Google Scholar]
  • Rao, V.G.,Ananth, M.S. and Varam, Y.B.G. (1983) Hydrodynamics of Two-Phase Co-Current Downflow through Packed Beds. AIChE Journal, 29, 467-483. [CrossRef] [Google Scholar]
  • Romm, E. S. (1966) Fluid Flow in Fractured Rocks (in Russian), Nedra Publishing House, Moscow (English translation: Blake, W.R., Bartlesville, OK, 1972). [Google Scholar]
  • Saez, A.E. and Carbonnell, R.G. (1985) Hydrodynamic Parameters for Gas-Liquid Co-Current Flow in Packed Beds. AIChE Journal, 31, 52-62. [Google Scholar]
  • Sato, Y.,Hirose, T.,Takahashi, F. and Toda, M. (1973) Pressure Loss and Liquid Holdup in Packed Bed Reactor with Cocurrent Gas-Liquid Downflow. J. Chem. Eng. Japan, 6, 147. [CrossRef] [Google Scholar]
  • Scheidegger, A.E. (1960) The Physics of Flow through Porous Media, University of Toronto Press. [Google Scholar]
  • Schneebeli, G. (1955) Expériences sur la limite de validité de la loi de Darcy et l’apparition de la turbulence dans un écoulement de filtration. La Houille Blanche, 10, 2, 141-149. [Google Scholar]
  • Schulenberg, T. and Muller, U. (1984) A Refined Model for the Coolability of Core Debris with Flow Entry from the Bottom. 6th Information Exchange Meanding on Debris Coolability, Los Angeles. [Google Scholar]
  • Tiss, M. and Evans, R.D. (1989) Measurement and Correlation of Non-Darcy Flow Coefficient in Consolidated Porous Media. J. Pand. Sci. Eng., 3, 19-33. [CrossRef] [Google Scholar]
  • Tosun, G. (1984) A Study of Cocurrent Downflow of Nonfoaming Gas-Liquid System in Packed Bed. 1. Flow Regimes: Search for a Generalized Flow Map. 2. Pressure Drop: Search for a Correlation. Ind. Eng. Chem. Process Des. Dev., 23, 1, 9-35. [Google Scholar]
  • Turland, B.D. and Moore, K.A. (1983) One-Dimensional Models of Boiling and Dryout. Post Accident Debris Colling. Proc. 5th Post Accident Heat Removal Information Exchange Mtg., Karlsruhe, July 1982. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.