Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Number 3, May-June 2000
Page(s) 259 - 268
Published online 01 October 2006
  • Ali, U.K., McGauley, P.J. and Wilson, C.J. (1997) The Effects of High-Velocity Flow and PVT Changes near the Wellbore on Condensate Well Performance. SPE 38923, 823-838.
  • Bear, J. (1972) Dynamics of Fluids in Porous Media. American Elsevier Publishing Company Inc.
  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena, J. Wiley & Sons Inc.
  • Blom, S.M.P. and Hagoort, J. (1998) The Combined Effect of Near-Critical Relative Permeability and Non-Darcy Flow on Well Impairment by Condensate Drop-out. SPE 39976, 1-12.
  • Brooks, R.H. and Corey, A.T. (1966) Properties of Porous Media Affecting Fluid Flow. J. Irrig. Drainage Division, Proc. Amer. Soc. Civil Eng., 92, 61-87.
  • Buchlin, J.M. and Stubos, A. (1987) Phase Change Phenomena at Liquid Saturated Self Heated Particulate Beds, in Modeling and Applications of Transport Phenomena in Porous Media, Bear, J. and Buchlin, J.M. (eds.), Kluwer Acad. Pub.
  • Chauveteau, G. and Thirriot, C. (1967) Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La Houille Blanche, 22, 1, 1-8.
  • Corey, A.T. (1954) The Interelationship between Gas and Oil Relative Permeabilities. Producer’s Monthly, 19, 1, 38-41.
  • Cornell, D. and Katz, D.L. (1953) Flow of Gases through Consolidated Porous Media. Ind. Eng. Chem., 45, 2145-2153. [CrossRef]
  • Darcy, H. (1856) Les fontaines publiques de la ville de Dijon, Dalmont.
  • Dullien, F.A.L. (1992) Porous Media–Fluid Transport and Pore Structure, Academic Press, Inc.
  • Ergun, S. (1952) Fluid Flow through Packed Columns. Chem. Eng. Progr., 48, 2, 89-94.
  • Evans, E.V. and Evans, R.D. (1986) The Influence of an Immobile or Mobile Saturation upon Non-Darcy Compressible Flow of Real Gases in Propped Fractures. SPE 15066, 181-195.
  • Evans, R.D., Hudson, C.S. and Greenlee, J.E. (1987) The Effect of an Immobile Liquid Saturation on the Non-Darcy Flow Coefficient in Porous Media, SPE Production Engineering, 331-338.
  • Forchheimer, P. (1914) Chap. 15, in Hydraulik, Teubner.
  • Fourar, M.,Bories, S.,Lenormand, R. and Persoff, P. (1993) Two-Phase Flow in Smooth and Rough Fractures: Measurement and Correlation by Porous-Media and Pipe-Flow Models. Water Resources Research, 29, 11, 3699-3708. [CrossRef]
  • Fourar, M. and Lenormand, R. (1998) A Viscous Coupling Model for Relative Permeabilities in Fractures. SPE 49006, 253-258.
  • Geertsma, J. (1974) Estimating the Coefficient of Inertial Resistance Fluid Flow through Porous Media. SPE 4706, 445-450.
  • Hubbert, M.K. (1956) Darcy Law and the Field Equations of the Flow of Underground Fluids. Trans. Amer. Inst. Min. Mandal. Eng., 207, 222-239.
  • Kouamé. (1989) Étude expérimentale d’écoulements diphasiques en fracture. Ph.D. Thesis, Inst. Nat. Poly. Toulouse.
  • Lee, H.S. and Catton, I. (1984) Two-Phase Flow in Stratified Porous Media. 6th Information Exchange Meanding on Debris Coolability, Los Angeles.
  • Lindquist, E. (1933) On the Flow of Water through Porous Soil. Premier Congr籠des grands barrages, Stockholm, 5, 81-101. [MathSciNet]
  • Lipinski, R.J. (1980) A Particle Bed Dryout Model with Upward and Downward Boiling. Trans. Am. Nucl. Soc., 35, 350-358.
  • Lipinski, R.J. (1981) A One-Dimensional Particle Bed Dryout Model. Trans. Am. Nucl. Soc., 38, 386-387.
  • Lipinski, R.J. (1982) A Model for Boiling and Dryout in Particle Beds. Report SAND 82-0756 (NUREG/CR-2646), Sandia Labs.
  • Lockhart, R.W. and Martinelli, R.C. (1949) Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Progr., 45, 39-48.
  • Mahoney, D. and Doggandt, K. (1997) Multiphase Flow in Fractures. Proc. of the Meanding of the Sociandy of Core Analysts, Calgary, Canada.
  • Marle, C.M. (1981) Multiphase Flow in Porous Media, Gulf Publishing Co.
  • Martins, J.P., Milton-Taylor, D. and Leung, H.K. (1990) The Effects of Non-Darcy Flow in Propped Hydraulic Fractures. SPE 20709, 899-913.
  • Merrill, L.S. (1975) Two-Phase Flow in Fractures. Ph.D. Thesis, University of Denver.
  • Midoux, N.,Favier, M. and Charpentier, J.C. (1976) Flow Pattern, Pressure Loss and Liquid Holdup Data in Gas-Liquid Downflow Packed Beds with Foaming and Nonfoaming Hydrocarbons. J. Chem. Eng. Japan, 9, 5, 350-356. [CrossRef]
  • Narayanaswamy, G., Sharma, M.M. and Pope, G.A. (1998) Effect of Heterogeneity on the Non-Darcy Flow Coefficient. SPE 39979, 215-226.
  • Neasham, J.W. (1977) The Morphology of Dispersed Clay in Sandstone Reservoirs and its Effects on Sandstone Shaliness, Pore Space and Fluid Flow Properties. 52nd Anual Fall Meanding of the SPE, Colorado, Oct. 9-12, SPE 6858.
  • Noman, R. and Archer, J.S. (1987) The Effect of Pore Structure on Non-Darcy Gas Flow in some Low Permeability Reservoir Rocks. SPE 16400, 103-110.
  • Persoff, P. and Pruess, K. (1995) Two-Phase Flow Visualization and Relative Permeability Measurement in Natural Rough- Walled Rock Fractures. Water Resources Research, 31, 5, 1175-1186. [CrossRef]
  • Rao, V.G.,Ananth, M.S. and Varam, Y.B.G. (1983) Hydrodynamics of Two-Phase Co-Current Downflow through Packed Beds. AIChE Journal, 29, 467-483. [CrossRef]
  • Romm, E. S. (1966) Fluid Flow in Fractured Rocks (in Russian), Nedra Publishing House, Moscow (English translation: Blake, W.R., Bartlesville, OK, 1972).
  • Saez, A.E. and Carbonnell, R.G. (1985) Hydrodynamic Parameters for Gas-Liquid Co-Current Flow in Packed Beds. AIChE Journal, 31, 52-62. [CrossRef] [MathSciNet]
  • Sato, Y.,Hirose, T.,Takahashi, F. and Toda, M. (1973) Pressure Loss and Liquid Holdup in Packed Bed Reactor with Cocurrent Gas-Liquid Downflow. J. Chem. Eng. Japan, 6, 147. [CrossRef]
  • Scheidegger, A.E. (1960) The Physics of Flow through Porous Media, University of Toronto Press.
  • Schneebeli, G. (1955) Expériences sur la limite de validité de la loi de Darcy et l’apparition de la turbulence dans un écoulement de filtration. La Houille Blanche, 10, 2, 141-149.
  • Schulenberg, T. and Muller, U. (1984) A Refined Model for the Coolability of Core Debris with Flow Entry from the Bottom. 6th Information Exchange Meanding on Debris Coolability, Los Angeles.
  • Tiss, M. and Evans, R.D. (1989) Measurement and Correlation of Non-Darcy Flow Coefficient in Consolidated Porous Media. J. Pand. Sci. Eng., 3, 19-33. [CrossRef]
  • Tosun, G. (1984) A Study of Cocurrent Downflow of Nonfoaming Gas-Liquid System in Packed Bed. 1. Flow Regimes: Search for a Generalized Flow Map. 2. Pressure Drop: Search for a Correlation. Ind. Eng. Chem. Process Des. Dev., 23, 1, 9-35.
  • Turland, B.D. and Moore, K.A. (1983) One-Dimensional Models of Boiling and Dryout. Post Accident Debris Colling. Proc. 5th Post Accident Heat Removal Information Exchange Mtg., Karlsruhe, July 1982.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.