Permeability Variation Models for Unsaturated Coalbed Methane Reservoirs
Modèles de variation de perméabilité pour des réservoirs de gaz de houille insaturé
1
School of Energy Resources, China University of Geoscience, Beijing
100083 – China
2
New Energy Research Center, CNOOC Research Institute, Beijing
100027 – China
e-mail: yale1210@163.com
* Corresponding author
A large number of models have been established to describe permeability variation with the depletion of reservoir pressure to date. However, no attempt has been made to draw enough attention to the difference in the effect of various factors on permeability variation in different production stages of unsaturated CoalBed Methane (CBM) reservoirs. This paper summarizes the existing and common permeability models, determines the relationship between various effects (effective stress effect, matrix shrinkage effect and Klinkenberg effect) and desorption characteristics of the recovery of unsaturated CBM reservoirs, then establishes two improved models to quantificationally describe permeability variation, and finally discusses the effects of various factors (gas saturation, cleat porosity, Poisson’s ratio and shrinkage coefficient) on permeability variation. The results show that permeability variation during the recovery of unsaturated CBM reservoirs can be divided into two stages: the first one is that permeability variation is only affected by the effective stress effect, and the second is that permeability variation is affected by the combination of the effective stress effect, matrix shrinkage effect and Klinkenberg effect. In the second stage, matrix shrinkage effect and Klinkenberg effect play much more significant role than the effective stress effect, which leads to an increase in permeability with depletion of reservoir pressure. Sensitivity analysis of parameters in the improved models reveals that those parameters associated with gas saturation, such as gas content, reservoir pressure, Langmuir volume and Langmuir pressure, have a significant impact on permeability variation in the first stage, and the important parameters in the second stage are the gas content, reservoir pressure, Langmuir volume, Langmuir pressure, Poisson’s ratio, Young’s modulus and shrinkage coefficient during the depletion of reservoir pressure. A comparative study of the improved models indicates that the improved SD model has a greater sensitivity to various parameters than the improved PM model and the improved models describe permeability dynamic variation more exactly than the original ones.
Résumé
Un grand nombre de modèles ont été établis à ce jour pour décrire la variation de perméabilité en fonction de l’épuisement de la pression du réservoir. Toutefois, aucune tentative n’a été faite pour attirer suffisamment l’attention sur la différence d’effet des différents facteurs sur la variation de perméabilité dans différentes phases de production des réservoirs de gaz de houille insaturés (CoalBed Methane, CBM). Le présent article résume les modèles de perméabilité existants et usuels, détermine la relation entre les différents effets (effet de contrainte effective, effet du rétrécissement de la matrice et effet Klinkenberg) et les caractéristiques de désorption pour la récupération des réservoirs de CBM insaturé, puis établit deux modèles améliorés pour décrire de manière quantitative la variation de perméabilité, et enfin discute des effets de différents facteurs (saturation en gaz, porosité traversante, coefficient de Poisson et coefficient de retrait) sur la variation de la perméabilité. Les résultats montrent que la variation de perméabilité pendant la récupération des réservoirs de CBM insaturé peut être divisée en deux phases : la première pour laquelle la variation de perméabilité n’est affectée que par l’effet de contrainte effectif et la seconde pour laquelle la variation de perméabilité est affectée par la combinaison de l’effet de contrainte effectif, de l’effet de retrait de matrice et de l’effet Klinkenberg. Dans la seconde phase, l’effet de retrait de matrice et l’effet Klinkenberg jouent un rôle plus significatif que l’effet de contrainte effectif, qui mène à une augmentation de la perméabilité lors de l’épuisement de la pression du réservoir. L’analyse de sensibilité des paramètres dans ces modèles améliorés révèle que les paramètres associés à la saturation en gaz, tels que la teneur en gaz, la pression du réservoir, le volume de Langmuir et la pression de Langmuir, ont un impact significatif sur la variation de perméabilité dans la première phase. Les paramètres importants dans la seconde phase pendant l’épuisement de la pression du réservoir sont la teneur en gaz, la pression du réservoir, le volume Langmuir, la pression Langmuir, le coefficient de Poisson, le module de Young et le coefficient de retrait. Une étude comparative des modèles améliorés indique que le modèle SD amélioré a une sensibilité aux différents paramètres supérieure au modèle PM amélioré et les modèles améliorés décrivent la variation dynamique de perméabilité de manière plus exacte que les modèles d’origine.
© Y. Lv et al., published by IFP Energies nouvelles, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.