Kerogen: from Types to Models of Chemical Structure
Les kérogènes : de la notion de types aux modèles de structure chimique
Institut français du pétrole
Corresponding author: mireille.vandenbroucke@ifp.fr
The aim of the present paper is to review the conceptual and analytical developments in the period 1970-1990 which have led, through kerogen isolation and analysis on one hand, and case studies of petroleum systems on the other hand, to the concept of kerogen types, evolution paths, and statistical chemical models. Kerogen is defined as the sedimentary organic matter generating petroleum, an insoluble product as opposed to its counterpart soluble in usual organic solvents, such as petroleum. As kerogen is a complex organic material intimately mixed with minerals in sediments, the first task was to set up a robust procedure for its isolation, enabling then its study by various physicochemical analyses. The parallel development of oil exploration, resulting in geological sample availability, made the geochemical comparison of various petroleum systems possible. Comparisons concerned not only oils, source rock extracts and kerogen compositions, but also the timing of petroleum generation. The notion of kinetic cracking of kerogen into petroleum stemming from these case studies, associated with the observation of time and temperature compensation, resulted in the use of pyrolysis to evaluate the oil potential still to be generated by the kerogen, and in the construction of the Rock-Eval. In the mid 70s, all main parameters on kerogens from reference series of source rocks were available to define the notions of types and evolution paths of kerogens upon geological maturation. A further important step for improving the knowledge of kerogen composition was achieved in the 80s using new techniques of analytical and preparative pyrolysis and their coupling with different detectors. The pyrolysis products, small building blocks issued from the kerogen thermal cracking, could thus be analyzed and quantified at the molecular level, without the problems of representativity associated with natural extract analyses, such as loss of volatile fractions or product migration out of source rocks. ;Contemporaneous developments in solid state 13C NMR allowed quantification of the various forms of carbon and their molecular environment in the kerogen, whereas quantification was not possible with IR or UV spectroscopy. The quantification of molecular building blocks and their bonding functional groups in kerogens allowed conceptual averaged molecular models of kerogens to be proposed in order to visualize their atomic and molecular composition, and the changes occurring in this composition according to types and maturity. Although it will never be possible to represent a true kerogen structure, simply because it is a mixture of various nonpolymeric macromolecules, an hypothetical average structure of kerogen, representing a large amount of information from various analyses, can provide a synthetic view of the main resemblances and differences among sedimentary organic matters.
Résumé
Le but de cet article est de présenter, à travers une revue des développements conceptuels et analytiques en géochimie dans la période 1970-1990, les principales étapes qui ont conduit, à travers la préparation et l'analyse des kérogènes d'une part, et l'étude de systèmes pétroliers de référence d'autre part, aux notions de types, chemins d'évolution et modèles statistiques de structure chimique des kérogènes. Le kérogène est défini comme la matière organique des sédiments qui produit le pétrole, opposant ainsi le pétrole, soluble dans les solvants organiques courants, à son complément insoluble. Ce kérogène étant une matière organique complexe intimement mélangée aux minéraux des sédiments, la première tâche a été de mettre au point un protocole fiable pour son isolement, permettant ensuite son étude par des méthodes physicochimiques variées. En parallèle, le développement des permis d'exploration pétrolière, donnant accès aux échantillons de forage, permettait la comparaison géochimique de divers systèmes pétroliers. Les comparaisons furent faites non seulement entre les compositions chimiques des huiles, roches mères et kérogènes, mais aussi sur l'époque de production du pétrole. La notion de cinétique de craquage du kérogène en pétrole résultant de ces études de systèmes pétroliers, associée à l'observation d'une compensation des facteurs temps et température, conduisit à utiliser la pyrolyse en laboratoire pour évaluer le potentiel pétrolier restant à produire par le kérogène, et donc, à la construction de l'appareil Rock-Eval. Au milieu des années 1970, les principaux paramètres géochimiques des kérogènes de certaines séries pétrolières de référence étaient disponibles pour la définition des notions de type et de chemin d'évolution des kérogènes au cours de l'enfouissement géologique des sédiments. Un pas important dans la connaissance de la composition chimique du kérogène fut franchi dans les années 1980 avec l'utilisation de nouvelles techniques de pyrolyse analytique et préparative, et leur couplage avec différents détecteurs. Les produits de pyrolyse, considérés comme briques élémentaires issues du craquage thermique du kérogène, pouvaient ainsi être analysés et quantifiés au niveau moléculaire, sans les problèmes de représentativité rencontrés avec l'analyse des extraits naturels et dus aux pertes de composés volatils et de produits ayant migré hors des roches mères. Le développement parallèle de la résonance magnétique nucléaire du 13C en phase solide permit l'analyse et la quantification des diverses formes du carbone et de son environnement chimique dans le kérogène, ce qui n'était pas possible auparavant sous forme quantitative par la spectroscopie infrarouge ou ultraviolette. L'analyse quantitative des briques moléculaires et des groupes fonctionnels qui les assemblaient dans le kérogène permit ainsi d'élaborer des modèles moléculaires statistiques de kérogènes dans le but de visualiser l'ensemble de leur composition atomique et moléculaire, ainsi que les changements de composition liés aux types et à la maturité géologique. Il ne sera jamais possible de représenter une structure réelle de kérogène, tout simplement parce que le kérogène est un mélange de macromolécules variées, et non de polymères, et donc leur analyse individuelle est impossible. Cependant, une structure hypothétique moyenne, prenant en compte un grand nombre d'informations issues d'analyses variées, permet de visualiser de façon synthétique les principales ressemblances et différences entre les matières organiques sédimentaires.
© IFP, 2003