Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 59
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2021037
Published online 17 September 2021
  • Zhu G., Zou C., Yang H., Wang K., Zheng D., Zhu Y.F., Wang Y. (2015) Hydrocarbon accumulation mechanisms and industrial exploration depth of large-area fracture–cavity carbonates in the Tarim Basin, western China, J. Petrol. Sci. Eng. 133, 889–907. https://doi.org/10.1016/j.petrol.2015.03.014. [CrossRef] [Google Scholar]
  • Li Y., Hou J.G., Li Y.Q. (2016) Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs, Pet. Explor. Dev. 43, 4, 655–662. [CrossRef] [Google Scholar]
  • Zhu G., Wang H., Weng N. (2016) TSR-altered oil with high-abundance thiaadamantanes of a deep-buried Cambrian gas condensate reservoir in Tarim Basin, Marine Petrol. Geol. 69, 1–12. [CrossRef] [Google Scholar]
  • Xiao Z., Li M., Huang S., Wang T., Zhang B., Fang R., Zhang K., Ni Z., Zhao Q., Wang D. (2016) Source, oil charging history and filling pathways of the Ordovician carbonate reservoir in the Halahatang Oilfield, Tarim Basin, NW China, Marine Petrol. Geol. 73, 59–71. [CrossRef] [Google Scholar]
  • Lu X., Wang Y., Tian F., Li X., Yang D., Li T., Lv Y., He X. (2017) New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin, Marine and Petroleum Geology 86, 587–605. https://doi.org/10.1016/j.marpetgeo.2017.06.023. [CrossRef] [Google Scholar]
  • Zhu G., Weng N., Wang H., Yang H., Zhang S., Su J., Liao F., Zhang B., Ji Y. (2015) Origin of diamondoid and sulphur compounds in the Tazhong Ordovician condensate, Tarim Basin, China: Implications for hydrocarbon exploration in deep-buried strata, Marine Petrol. Geol. 62, 14–27. [CrossRef] [Google Scholar]
  • Jia C., Pang X. (2015) Research processes and main development directions of deep hydrocarbon geological theories, Acta Petrolei Sinica 36, 12, 1457–1469. [Google Scholar]
  • Zhang L., Guo X., Hao F., Zou H., Li P. (2016) Lithologic characteristics and diagenesis of the Upper Triassic Xujiahe formation, Yuanba area, northeastern Sichuan Basin, J. Natural Gas Sci. Eng. 35, 1320–1335. [CrossRef] [Google Scholar]
  • Zhang K. (2012) Strategic replacement situation and outlook of China oil-gas production area, Pet. Explor. Dev. 395, 547–559. [CrossRef] [Google Scholar]
  • Li Y., Yu Q., Jia C., Liu P., Wang Q., Wang D. (2020) Rate transient analysis for coupling Darcy flow and free flow in bead-string fracture-caved carbonate reservoirs, J. Pet. Sci. Eng. 195, 107809. https://doi.org/10.1016/j.petrol.2020.107809. [CrossRef] [Google Scholar]
  • Zhao W., Shen A., Qiao Z., Zheng J., Wang X. (2014) Carbonate karst reservoirs of the Tarim Basin, northwest China: Types, features, origins, and implications for hydrocarbon exploration, Interpretation 23, SF65-SF90. [CrossRef] [Google Scholar]
  • Du X., Li Q., Lu Z., Li P., Xian Y., Xu Y., Li D., Lu D. (2020) Pressure transient analysis for multi-vug composite fractured vuggy carbonate reservoirs, J. Pet. Sci. Eng. 193, 107389. https://doi.org/10.1016/j.petrol.2020.107389. [CrossRef] [Google Scholar]
  • Huang Z.Q., Yao J., Wang Y.Y. (2013) An efficient numerical model for immiscible two-phase flow in fractured karst reservoirs, Commun. Comput. Phys. 13, 2, 540–558. [CrossRef] [Google Scholar]
  • Wan Y.Z., Liu Y.W., Chen F.F., Wu N.Y., Hu G.W. (2018) Numerical well test model for caved carbonate reservoirs and its application in Tarim Basin, China, J. Pet. Sci. Eng. 161, 611–624. https://doi.org/10.1016/j.petrol.2017.12.013. [CrossRef] [Google Scholar]
  • Flemisch B., Berre I., Boon W., Fumagalli A., Schwenck N., Scotti A., Stefansson I., Tatomir A. (2018) Benchmarks for single-phase flow in fractured porous media, Adv. Water Resour. 111, 239–258. https://doi.org/10.1016/j.advwatres.2017.10.036. [CrossRef] [Google Scholar]
  • Berre I., Doster F., Keilegavlen E. (2019) Flow in fractured porous media: A review of conceptual models and discretization approaches, Transp. Porous Media 130, 1, 215–236. [CrossRef] [Google Scholar]
  • Wang D., Sun J., Li Y., Peng H. (2019) An efficient hybrid model for nonlinear two-phase flow in fractured low-permeability reservoir, Energies 12, 15, 2850. [CrossRef] [Google Scholar]
  • Wei C., Cheng S., Wang Y., Shi W., Li J., Zhang J., Yu H. (2021) Practical pressure-transient analysis solutions for a well intercepted by finite conductivity vertical fracture in naturally fractured reservoirs, J. Pet. Sci. Eng. 204, 108768. https://doi.org/10.1016/j.petrol.2021.108768. [CrossRef] [Google Scholar]
  • Dejam M., Hassanzadeh H., Chen Z. (2018) Semi-analytical solution for pressure transient analysis of a hydraulically fractured vertical well in a bounded dual-porosity reservoir, J. hydrol. 565, 289–301. https://doi.org/10.1016/j.jhydrol.2018.08.020. [CrossRef] [Google Scholar]
  • Yan X., Huang Z., Yao J., Zhang Z., Liu P., Li Y., Fan D. (2019) Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model, Adv. Water Resour. 126, 137–154. [Google Scholar]
  • Tian F., Jin Q., Lu X., Lei Y., Zhang L., Zheng S., Zhang H., Rong Y., Liu N. (2016) Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe Oilfield, Tarim Basin, Western China, Marine Petrol. Geol. 69, 53–73. [CrossRef] [Google Scholar]
  • Popov P., Qin G., Bi L., Efendiev Y., Ewing R.E., Li J. (2009) Multiphysics and multiscale methods for modeling fluid flow through naturally fractured carbonate karst reservoirs, SPE Reserv. Eval. Eng. 12, 02, 218–231. [CrossRef] [Google Scholar]
  • Abdassah D., Ershaghi I. (1986) Triple-porosity systems for representing naturally fractured reservoirs, SPE Form. Eval. 1, 02, 113–127. [CrossRef] [Google Scholar]
  • Chu W.C., Shank G.D. (1993) A new model for a fractured well in a radial, composite reservoir (includes associated papers 27919, 28665 and 29212), SPE Form. Eval. 8, 03, 225–232. https://doi.org/10.2118/20579-PA. [CrossRef] [Google Scholar]
  • Kossack C.A., Gurpinar O. (2001) A methodology for simulation of vuggy and fractured reservoirs, in: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. https://doi.org/10.2118/66366-MS. [Google Scholar]
  • Camacho-Velazquez R., Vasquez-Cruz M., Castrejon-Aivar R., Arana-Ortiz V. (2002) Pressure transient and decline curve behaviors in naturally fractured Vuggy carbonate reservoirs, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Wu Y.S., Ehlig-Economides C.A., Qin G., Kang Z., Zhang W., Ajayi B.T., Tao Q. (2007) A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir, in: Paper presented at the SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, Society of Petroleum Engineers. https://doi.org/10.2118/110044-MS. [Google Scholar]
  • Nie R.S., Meng Y.F., Guo J.C., Jia Y.L. (2012) Modeling transient flow behavior of a horizontal well in a coal seam, Int. J. Coal Geol. 92, 54–68. https://doi.org/10.1016/j.coal.2011.12.005. [CrossRef] [Google Scholar]
  • Zheng D., Yuan B., Moghanloo R.G. (2017) Analytical modeling dynamic drainage volume for transient flow towards multi-stage fractured wells in composite shale reservoirs, J. Pet. Sci. Eng. 149, 756–764. https://doi.org/10.1016/j.petrol.2016.11.023. [CrossRef] [Google Scholar]
  • Abbasi M., Madani M., Sharifi M., Kazemi A. (2018) Fluid flow in fractured reservoirs: Exact analytical solution for transient dual porosity model with variable rock matrix block size, J. Pet. Sci. Eng. 164, 571–583. https://doi.org/10.1016/j.petrol.2018.01.010. [CrossRef] [Google Scholar]
  • Wang Y., Cheng S., Zhang K., An X. (2020) Investigation on the pressure behavior of injectors influenced by waterflood-induced fractures: field cases in Huaqing reservoir, Changqing Oilfield, China, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 20. [CrossRef] [Google Scholar]
  • Shi W., Yao Y., Cheng S., Li H., Wang M., Cui N., Zhang C., Li H., Tu K., Shi Z. (2021) Investigation on the pressure response behavior of two-layer vertical mixed boundary reservoir: field cases in Western Sichuan XC gas field, China, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 76, 2. [CrossRef] [Google Scholar]
  • Yang F., Wang X.H., Liu H. (2011) Well test interpretation model for wells drilled in cavity of fractured vuggy carbonate reservoirs, Chin. J. Hydrodyn 26, 278–283. [Google Scholar]
  • Gao B., Huang Z.Q., Yao J., Lv X.R., Wu Y.S. (2016) Pressure transient analysis of a well penetrating a filled cavity in naturally fractured carbonate reservoirs, J. Pet. Sci. Eng. 145, 392–403. https://doi.org/10.1016/j.petrol.2016.05.037. [CrossRef] [Google Scholar]
  • Liu J.Y., Liu Z.B., Zou N., Liu X.L., You X.T., Yi S. (2020) A well test model study of multi fracture-vug combination for fractured vuggy carbonate reservoirs, in: ICAE International Conference on Applied Energy, 2020, December 1–10, 2020, Bangkok. [Google Scholar]
  • Li Q., Du X., Tang Q., Xu Y., Li P., Lu D. (2021) A novel well test model for fractured vuggy carbonate reservoirs with the vertical bead-on-a-string structure, J. Pet. Sci. Eng. 196, 107938. https://doi.org/10.1016/j.petrol.2020.107938. [CrossRef] [Google Scholar]
  • Warren J.E., Root P.J. (1963) The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. 3, 03, 245–255. [CrossRef] [Google Scholar]
  • Van Everdingen A.F., Hurst W. (1949) The application of the Laplace transformation to flow problems in reservoirs, J. Pet. Technol. 1, 12, 305–324. [CrossRef] [Google Scholar]
  • Stehfest H. (1970) Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM 13, 1, 47–49. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.