Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 58
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2021040
Published online 06 October 2021
  • Adkins S.S., Chen X., Chan I., Torino E., Nguyen Q.P., Sanders A.W., Johnston K.P. (2010) Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants. Langmuir ACS J. Surf. Coll. 26, 8, 5335–5348. [Google Scholar]
  • Adkins S.S., Gohil D., Dickson J.L., Webber S.E., Johnston K.P. (2007) Water-in-carbon dioxide emulsions stabilized with hydrophobic silica particles. Phys. Chem. Chem. Phys. 9, 48, 6333–6343. [CrossRef] [PubMed] [Google Scholar]
  • Al Ayesh A.H., Salazar R., Farajzadeh R., Vincent-Bonnieu S., Rossen W.R. (2017) Foam diversion in heterogeneous reservoirs: effect of permeability and injection method. SPE J. 22, 05, 1402–1415. [Google Scholar]
  • Andrianov A., Farajzadeh R., Mahmoodi Nick M., Talanana M., Zitha P.L. (2012) Immiscible foam for enhancing oil recovery: bulk and porous media experiments. J. Ind. Eng. Chem. 51, 5, 2214–2226. [Google Scholar]
  • Basheva E.S., Ganchev D., Denkov N.D., Kasuga K., Satoh N.Tsujii K. (2000) Role of betaine as foam booster in the presence of silicone oil drops. Langmuir 16, 3, 1000–1013. [Google Scholar]
  • Chen Z., Zhao X. (2015) Enhancing heavy-oil recovery by using middle carbon alcohol-enhanced waterflooding, surfactant flooding, and foam flooding, Energy Fuels 29, 4, 2153–2161. [Google Scholar]
  • Da C., Alzobaidi S., Jian G., Zhang L., Biswal S.L., Hirasaki G.J., Johnston K.P. (2018) Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150 °C in high salinity brine. J. Ind. Eng. Chem. 166, 880–890. [Google Scholar]
  • Danov K.D., Kralchevska S.D., Kralchevsky P.A., Ananthapadmanabhan K.P., Lips A. (2004) Mixed solutions of anionic and zwitterionic surfactant (betaine): Surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir 20, 13, 5445–5453. [CrossRef] [PubMed] [Google Scholar]
  • Dhanuka V.V., Dickson J.L., Ryoo W., Johnston K.P. (2006) High internal phase CO2-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant, J. Colloid. Interf. Sci. 298, 1, 406–418. [Google Scholar]
  • Du D., Li Y., Chao K., Wang C., Wang D. (2018) Laboratory study of the Non-Newtonian behavior of supercritical CO2 foam flow in a straight tube. J. Ind. Eng. Chem. 164, 390–399. [Google Scholar]
  • Emera M.K., Sarma H.K. (2005) Use of genetic algorithm to estimate CO2 – oil minimum miscibility pressure – a key parameter in design of CO2 miscible flood, J. Petrol. Sci. Eng. 46, 1–2, 37–52. [Google Scholar]
  • Exerowa D., Kolarov T., Khristov K. (1987) Direct measurement of disjoining pressure in black foam films. I. Films from an ionic surfactant. Colloids Surf. A Physicochem. Eng. Asp. 22, 2, 161–169. [Google Scholar]
  • Farid Ibrahim A., Nasr-El-Din H. (2018) Stability improvement of CO2 foam for enhanced oil recovery applications using nanoparticles and viscoelastic surfactants, in: SPE Trinidad and Tobago Section Energy Resources Conference. Port of Spain, Trinidad and Tobago, Society of Petroleum Engineers, 17 p. [Google Scholar]
  • Friedmann F., Chen W.H., Gauglitz P.A. (1991) Experimental and simulation study of high-temperature foam displacement in porous media. SPE Reserv. Eng. 6, 01, 37–45. [Google Scholar]
  • Ge J., Wang Y. (2015) Surfactant enhanced oil recovery in a high temperature and high salinity carbonate reservoir. J. Surfactants Deterg. 18, 6, 1043–1050. [Google Scholar]
  • Ghasemi M., Astutik W., Alavian S., Whitson C.H., Sigalas L., Olsen D., Suicmez V.S. (2018) Experimental and numerical investigation of tertiary-CO2 flooding in a fractured chalk reservoir, J. Pet. Sci. Eng. 164, 485–500. [Google Scholar]
  • Golemanov K., Denkov N.D., Tcholakova S., Vethamuthu M., Lips A. (2008) Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir 24, 9956–9961. [CrossRef] [PubMed] [Google Scholar]
  • Heller J.P., Kuntamukkula M.S. (1987) Critical review of the foam rheology literature. Ind. Eng. Chem. Res. 26, 2, 318–325. [Google Scholar]
  • Hirasaki G.J., Lawson J.B. (1985) Mechanisms of foam flow in porous media: Apparent viscosity in smooth capillaries. SPE J. 25, 02, 176–190. [Google Scholar]
  • Holt T., Vassenden F., Svorstol I. (1996) Effects of pressure on foam stability; implications for foam screening, in: SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 1996. https://doi.org/10.2118/35398-MS [Google Scholar]
  • Huh C., Rossen W.R. (2008) Approximate pore-level modeling for apparent viscosity of polymer-enhanced foam in porous media. SPE J. 13, 01, 17–25. [Google Scholar]
  • Langevin D. (2000) Influence of interfacial rheology on foam and emulsion properties. Adv. Colloid. Interface. Sci. 88, 1–2, 209–222. [CrossRef] [PubMed] [Google Scholar]
  • Li B., Hirasaki G.J., Miller C.A. (2006) Upscaling of foam mobility control to three dimensions, in: SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, Society of Petroleum Engineers. [Google Scholar]
  • Li R.F., Hirasaki G.J., Miller C.A., Masalmeh S.K. (2012) Wettability alteration and foam mobility control in a layered, 2D heterogeneous sandpack, SPE J. 17, 04, 1207–1220. [Google Scholar]
  • Li W., Wei F., Xiong C., Ouyang J., Dai M., Shao L., Lv J. (2019) Effect of salinities on supercritical CO2 foam stabilized by a betaine surfactant for improving oil recovery. Energy Fuels 33, 9, 8312–8322. [Google Scholar]
  • Meyssami B., Balaban M.O., Teixeira A.A. (1999) Prediction of pH in model systems pressurized with carbon dioxide. Biotechnol. Prog. 8, 2, 149–154. [Google Scholar]
  • Patil P.D., Knight T., Katiyar A., Vanderwal P., Scherlin J., Rozowski P., Ibrahim M., Sridhar G.B., Nguyen Q.P. (2018) CO2 Foam Field Pilot Test in Sandstone Reservoir: Complete Analysis of Foam Pilot Response, SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA. [Google Scholar]
  • Raza S.H. (1970) Foam in porous media: characteristics and potential applications. SPE J. 10, 04, 328–336. [Google Scholar]
  • Ren G., Nguyen Q.P., Lau H.C. (2018) Laboratory investigation of oil recovery by CO2 foam in a fractured carbonate reservoir using CO2-soluble surfactants. J. Ind. Eng. Chem. 169, 277–296. [Google Scholar]
  • Rocha S.R.P.D., Harrison K.L., Johnston K.P. (1999) Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide. Langmuir 15, 2, 419–428. [Google Scholar]
  • Rossen W.R., Van Duijn C.J., Nguyen Q.P., Shen C., Vikingstad A.K. (2010) Injection strategies to overcome gravity segregation in simultaneous gas and water injection into homogeneous reservoirs. SPE J. 15, 01, 76–90. [Google Scholar]
  • Wang L., Yoon R.H. (2009) Effect of pH and NaCl concentration on the stability of surfactant-free foam films. Langmuir 25, 1, 294–297. [CrossRef] [PubMed] [Google Scholar]
  • Wiebe R.J.C.R. (1941) The binary system carbon dioxide-water under pressure, Chem. Rev. 29, 3, 475–481. [Google Scholar]
  • Worthen A.J., Parikh P.S., Chen Y., Bryant S.L., Huh C., Johnston K.P. (2014) Carbon dioxide-in-water foams stabilized with a mixture of nanoparticles and surfactant for CO2 storage and utilization applications. Energy Procedia 63, 7929–7938. [Google Scholar]
  • Xue Z., Worthen A., Qajar A., Robert I., Bryant S.L., Huh C., Prodanović M., Johnston K.P. (2016) Viscosity and stability of ultra-high internal phase CO2-in-Water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes. J. Colloid Interface Sci. 461, 383–395. [CrossRef] [PubMed] [Google Scholar]
  • Zhang H., Xu G., Liu T., Xu L., Zhou Y. (2013) Foam and interfacial properties of Tween 20 – bovine serum albumin systems, Coll. Surf. A 416, , 23–31.. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.