Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 27
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2021009
Published online 14 April 2021
  • Shi S., Wu X., Han G., Zhong Z. (2019) Study on the gas–liquid annular vortex flow for liquid unloading of gas well, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 82. [Google Scholar]
  • Amaya-Gómez R., López J., Pineda H., Urbano-Caguasango D., Pinilla J., Ratkovich N., Muñoz F. (2019) Probabilistic approach of a flow pattern map for horizontal, vertical, and inclined pipes, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 67. [CrossRef] [Google Scholar]
  • Duan J.M., Wang W., Zhang Y., Zheng L.J., Liu H.S., Gong J. (2013) Energy equation derivation of the oil-gas flow in pipelines, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 68, 2, 341–353. [Google Scholar]
  • Tran Q.H., Ferre D., Pauchon C., Masella J.P. (1998) Transient simulation of two-phase flows in pipes, Revue de l’Institut Français du Pétrole 53, 6, 801–811. [Google Scholar]
  • Henriot V., Duret E., Heintzé E., Courbot A. (2002) Multiphase production control: Application to slug flow, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 57, 1, 87–98. [Google Scholar]
  • Duan J., Li J., Liu H., Gu K., Guan J., Xu S., Gong J. (2018) A model of wax deposition under oil-gas two-phase stratified flow in horizontal pipe, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 80. [Google Scholar]
  • Ghajar A.J. (2020) Two-phase gas-liquid flow in pipes with different orientations, Springer International Publishing. [Google Scholar]
  • Salhi Y., Si-Ahmed E.K., Legrand J., Degrez G. (2010) Stability analysis of inclined stratified two-phase gas–liquid flow, Nucl. Eng. Des. 240, 5, 1083–1096. [Google Scholar]
  • Ferré D. (1979) Écoulements diphasiques à poches en conduite horizontale, La Houille Blanche 6–7, 378–381. [Google Scholar]
  • Thaker J., Banerjee J. (2015) Characterization of two-phase slug flow sub-regimes using flow visualization, J. Petrol. Sci. Eng. 135, 561–576. [Google Scholar]
  • Thaker J., Banerjee J. (2016) Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe, J. Petrol. Sci. Eng. 145, 298–320. [Google Scholar]
  • Deendarlianto, Rahmandhika A., Dinaryanto O., Widyaparaga A., Indarto (2019) Experimental study on the hydrodynamic behavior of gas-liquid air-water two-phase flow near the transition to slug flow in horizontal pipes, Int. J. Heat Mass Transf. 130, 187–203. [Google Scholar]
  • Arabi A., Salhi Y., Zenati Y., Si-Ahmed E.K., Legrand J. (2020) On gas-liquid intermittent flow in a horizontal pipe: Influence of sub-regime on slug frequency, Chem. Eng. Sci. 211, 115251. [Google Scholar]
  • Arabi A. (2019) Contribution à l’étude du comportement d’un écoulement diphasique dans une conduite en présence d’une singularité, PhD thesis, USTHB, Algiers, Algeria. [Google Scholar]
  • API (2016) API 579-1/ASME FFS-1 2016 Fitness-For-Service, American Petroleum Institute, Washington, DC. [Google Scholar]
  • Dukler A.E., Hubbard M.G. (1975) A model for gas-liquid slug flow in horizontal and near horizontal tubes, Industrial & Engineering Chemistry Fundamentals 14, 4, 337–347. [Google Scholar]
  • Taitel Y., Dukler A.E. (1977) A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes, Int. J. Multiphase Flow 3, 6, 585–596. [Google Scholar]
  • Wallis G.B., Dobson J.E. (1973) Prediction of the initiation of slugs with linear stability criterion, Int. J. Multiphase Flow 1, 173–193. [CrossRef] [Google Scholar]
  • Taitel Y., Dukler A.E. (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J 22, 1, 47–55. [Google Scholar]
  • Hurlburt E.T., Hanratty T.J. (2002) Prediction of the transition from stratified to slug and plug flow for long pipes, Int. J. Multiphase Flow 28, 5, 707–729. [Google Scholar]
  • Miao S., Hendrickson K., Liu Y. (2019) Slug generation processes in co-current turbulent-gas/laminar-liquid flows in horizontal channels, J. Fluid Mech. 860, 224–257. [Google Scholar]
  • Cheng S.C., Wong Y.L., Groeneveld D.C. (1988) CHF prediction for horizontal flow, in: International Symposium on Phase Change Heat Transfer, Chongqing, Sichuan, China, May 20-23, 1988, pp. 211–215. [Google Scholar]
  • Weisman J., Duncan D.G.J.C.T., Gibson J., Crawford T. (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines, Int. J. Multiphase Flow 5, 6, 437–462. [Google Scholar]
  • Fan Z., Lusseyran F., Hanratty T.J. (1993) Initiation of slugs in horizontal gas-liquid flows, AIChE J. 39, 11, 1741–1753. [CrossRef] [Google Scholar]
  • Woods B.D., Hanratty T.J. (1999) Influence of Froude number on physical processes determining frequency of slugging in horizontal gas–liquid flows, Int. J. Multiphase Flow 25, 6–7, 1195–1223. [CrossRef] [Google Scholar]
  • Salhi Y. (2010) Contributions théorique et expérimentale à l’étude des phénomènes de transition d’un écoulement stratifié à l’écoulement poche/bouchon dans une conduite horizontale en présence de singularité, PhD Thesis, USTHB Algiers, Algeria. [Google Scholar]
  • Vaze M.J., Banerjee J. (2012) Prediction of liquid height for onset of slug flow, Can J. Chem. Eng. 90, 5, 1295–1303. [Google Scholar]
  • Ghajar A.J., Tang C.C. (2010) Importance of non-boiling two-phase flow heat transfer in pipes for industrial applications, Heat Trans. Eng. 31, 9, 711–732. [Google Scholar]
  • Vaze M.J., Banerjee J. (2011) Experimental visualization of two-phase flow patterns and transition from stratified to slug flow, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 225, 2, 382–389. [Google Scholar]
  • Bhagwat S.M., Ghajar A.J. (2015) An empirical model to predict the transition between stratified and non-stratified gas-liquid two-phase flow in horizontal and downward inclined pipes, Heat Trans. Eng. 36, 18, 1489–1498. [Google Scholar]
  • Thaker J., Banerjee J. (2017) Experimental investigations on onset of slugging in horizontal air-water two-phase flow, in: Fluid Mechanics and Fluid Power–Contemporary Research, Springer, New Delhi, pp. 157–166. [Google Scholar]
  • Dinaryanto O., Prayitno Y.A.K., Majid A.I., Hudaya A.Z., Nusirwan Y.A., Widyaparaga A. (2017) Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe, Exp. Therm. Fluid Sci. 81, 93–108. [Google Scholar]
  • Kadri U. (2014) A probabilistic approach for predicting average slug frequency in horizontal gas/liquid pipe flow, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 2, 331–339. [Google Scholar]
  • Arabi A., Salhi Y., Si-Ahmed E.K., Legrand J. (2018) Influence of a sudden expansion on slug flow characteristics in a horizontal two-phase flow: a pressure drop fluctuations analysis, Meccanica 53, 13, 3321–3338. [Google Scholar]
  • Zitouni A.H., Arabi A., Salhi Y., Zenati Y., Si-Ahmed E.K., Legrand J. (2021) Slug length and frequency upstream a sudden expansion in gas-liquid intermittent flow, Exp. Comput. Multiphase Flow 3, 2, 124–130. [Google Scholar]
  • Thaker J., Banerjee J. (2016) On intermittent flow characteristics of gas–liquid two-phase flow, Nucl. Eng. Des. 310, 363–377. [Google Scholar]
  • Talley J.D., Worosz T., Kim S., Buchanan J.R. Jr. (2015) Characterization of horizontal air–water two-phase flow in a round pipe part I: Flow visualization, Int. J. Multiphase Flow 76, 212–222. [Google Scholar]
  • Thaker J., Banerjee J. (2017) Transition of plug to slug flow and associated fluid dynamics, Int. J. Multiphase Flow 91, 63–75. [Google Scholar]
  • Fossa M., Guglielmini G., Marchitto A. (2003) Intermittent flow parameters from void fraction analysis, Flow Meas. Instrum. 14, 4–5, 161–168. [CrossRef] [Google Scholar]
  • Wang X., Guo L., Zhang X. (2007) An experimental study of the statistical parameters of gas–liquid two-phase slug flow in horizontal pipeline, Int. J. Heat Mass Trans. 50, 11–12, 2439–2443. [Google Scholar]
  • Arabi A., Ragui K., Salhi Y., Filali A. (2020) Slug frequency for a gas-liquid plug flow: Review and development of a new correlation, Int. Commun. Heat Mass Trans. 118, 104841. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.