Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 28
Number of page(s) 11
Published online 30 April 2021
  • Galyfianakis G., Garefalakis A., Mantalis G. (2017) The effects of commodities and financial markets on crude oil, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 1, 3. [Google Scholar]
  • Wang Y., Wei Y., Wu C. (2011) Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil, Phys. A, Stat. Mech. Appl. 390, 5, 864–875. [Google Scholar]
  • Abledu G.K., Agbodah K. (2012) Stochastic forecasting and modelling of volatility of oil prices in Ghana using ARIMA time series model, Eur. J. Bus. Manag. 4, 16, 122–131. [Google Scholar]
  • Baumeister C., Kilian L. (2012) Real-time forecasts of the real price of oil, J. Bus. Econ. Stat. 30, 2, 326–336. [Google Scholar]
  • Shin H., Hou T., Park K., Park C.K., Choi S. (2013) Prediction of movement direction in crude oil prices based on semi-supervised learning, Decis. Support Syst. 55, 1, 348–358. [Google Scholar]
  • Yu L., Xu H., Tang L. (2017) LSSVR ensemble learning with uncertain parameters for crude oil price forecasting, Appl. Soft Comput. 56, 692–701. [Google Scholar]
  • Tang M., Zhang J. (2012) A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices, J. Bus. Econ. 64, 4, 275–286. [Google Scholar]
  • Zhao Y., Li J., Yu L. (2017) A deep learning ensemble approach for crude oil price forecasting, Energy Econ. 66, 9–16. [Google Scholar]
  • Kristjanpoller W., Minutolo M.C. (2016) Forecasting volatility of oil price using an artificial neural network GARCH model, Expert Syst. Appl. 65, 233–241. [Google Scholar]
  • Safari A., Davallou M. (2018) Oil price forecasting using a hybrid model, Energy 148, 49–58. [Google Scholar]
  • Yu L., Zhao Y., Tang L. (2014) A compressed sensing based AI learning paradigm for crude oil price forecasting, Energy Econ. 46, 236–245. [Google Scholar]
  • Zhang X., Lai K.K., Wang S. (2008) A new approach for crude oil price analysis based on empirical mode decomposition, Energy Econ. 30, 905–918. [Google Scholar]
  • Xing F.Z., Cambria E., Welsch R.E. (2018) Natural language based financial forecasting: a survey, Artif. Intell. Rev. 50, 1, 49–73. [Google Scholar]
  • Xing F.Z., Cambria E., Welsch R.E. (2018) Intelligent asset allocation via market sentiment views, IEEE Comput. Intell. 13, 4, 1–20. [Google Scholar]
  • Oladosu G. (2009) Identifying the oil price-macroeconomy relationship: An empirical mode decomposition analysis of US data, Energy Policy 37, 12, 5417–5426. [Google Scholar]
  • King K., Deng A., Metz D. (2012) An econometric analysis of oil price movements: The role of political events and economic news, financial trading, and market fundamentals, Bates White Economic Consulting. [Google Scholar]
  • Bohn T.A. (2017) Improving long term stock market prediction with text analysis, Electronic Thesis and Dissertation Repository, The University of Western Ontario. Available at [Google Scholar]
  • Li X., Wang C., Dong J., Wang F., Deng X., Zhu S. (2011) Improving stock market prediction by integrating both market news and stock prices, in Database and Expert Systems Applications, 22nd International Conference, DEXA 2011, Bilbao, Spain, August 29 – September 2, 2011, Proceedings, Part II, A. Hameurlain, S.W. Liddle, K.-D. Schewe, X. Zhou (eds),Springer-Verlag, Berlin Heidelberg, pp. 279–293. [Google Scholar]
  • Li T., Hu Z., Jia Y., Wu J., Zhou Y. (2018) Forecasting crude oil prices using ensemble empirical mode decomposition and sparse bayesian learning, Energies 11, 7, 1882. [Google Scholar]
  • Yu L., Dai W., Tang L. (2016) A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting, Eng. Appl. Artif. Intel. 47, 110–121. [Google Scholar]
  • Li J., Wang J. (2020) Stochastic recurrent wavelet neural network with EEMD method on energy price prediction, Soft Comput. 24, 17133–17151. [Google Scholar]
  • Abdollahi H. (2020) A novel hybrid model for forecasting crude oil price based on time series decomposition, Appl. Energy 267. [Google Scholar]
  • Wu Y., Wu Q., Zhu J. (2019) Improved EEMD-based crude oil price forecasting using LSTM networks, Physica A Stat. Mech. Appl. 516, 114–124. [Google Scholar]
  • Devitt A., Ahmad K. (2007) Sentiment polarity identification in financial news: A cohesion-based approach. Association for Computational Linguistics, in: A. Zaenen, A. Van Den Bosch (eds), Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 984–991. [Google Scholar]
  • Das S.R., Chen M.Y. (2007) Yahoo! for Amazon: Sentiment extraction from small talk on the web, Manage Sci. 53, 9, 1375–1388. [Google Scholar]
  • Bollen J., Mao H., Zeng X. (2011) Twitter mood predicts the stock market, J. Comput. Sci. 2, 1, 1–8. [Google Scholar]
  • Lechthaler F., Leinert L. (2012) Moody oil-What is driving the crude oil price? CER-ETH Economics working paper series 12/168, CER-ETH-Center of Economic Research (CER-ETH) at ETH Zurich. [Google Scholar]
  • Alfano S.J., Feuerriegel S., Neumann D. (2015) Is news sentiment more than just noise? [Google Scholar]
  • Dong Z., Dong Q. (2003) HowNet – a hybrid language and knowledge resource, in C. Zong (ed), Proceedings of International Conference on Natural Language Processing and Knowledge Engineering, IEEE, pp. 820–824. [Google Scholar]
  • Yan J., Bracewell D.B., Ren F., Kuroiwa S. (2008) The creation of a Chinese emotion ontology based on HowNet, Eng. Lett. 16, 1, 166–171. [Google Scholar]
  • Liu J., Xu J., Zhang Y. (2013) An approach of hybrid hierarchical structure for word similarity computing by HowNet, in: R. Mitkov, J.C. Park (eds), Proceedings of the 6th International Joint Conference on Natural Language Processing, Asian Federation of Natural Language Processing, pp. 927–931. [Google Scholar]
  • Huang N.E., Shen Z., Long S.R. (1999) A new view of nonlinear water waves: The Hilbert Spectrum, Ann. Rev. Fluid Mech. 31, 1, 417–457. [Google Scholar]
  • Wu Z., Huang N.E. (2009) Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv. Adapt. Data Anal. 1, 1, 1–41. [Google Scholar]
  • Torres M.E., Colominas M.A., Schlotthauer G., Flandrin P. (2011) A complete ensemble empirical mode decomposition with adaptive noise, in: Proceedings of the 36th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, pp. 4144–4147. [Google Scholar]
  • Hochreiter S., Schmidhuber J. (1997) Long short-term memory, Neural Comput. 9, 8, 1735–1780. [CrossRef] [PubMed] [Google Scholar]
  • Mnih V., Heess N., Graves A., Kavukcuoglu K. (2014) Recurrent models of visual attention, in: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds), Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, MIT Press, Cambridge, MA, United States, pp. 2204–2212. [Google Scholar]
  • Bahdanau D., Cho K., Bengio Y. (2015) Neural machine translation by jointly learning to align and translate, in: Y. Bengio, Y. LeCun (eds), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, International Conference on Learning Representations , ICLR. [Google Scholar]
  • Zhou Y., Li T., Shi J., Qian Z. (2019) A CEEMDAN and xgboost-based approach to forecast crude oil prices, Complexity 2019, 1–15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.