Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 27
Nombre de pages 9
DOI https://doi.org/10.2516/ogst/2021009
Publié en ligne 14 avril 2021
  • Shi S., Wu X., Han G., Zhong Z. (2019) Study on the gas–liquid annular vortex flow for liquid unloading of gas well, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 82. [Google Scholar]
  • Amaya-Gómez R., López J., Pineda H., Urbano-Caguasango D., Pinilla J., Ratkovich N., Muñoz F. (2019) Probabilistic approach of a flow pattern map for horizontal, vertical, and inclined pipes, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 67. [CrossRef] [Google Scholar]
  • Duan J.M., Wang W., Zhang Y., Zheng L.J., Liu H.S., Gong J. (2013) Energy equation derivation of the oil-gas flow in pipelines, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 68, 2, 341–353. [Google Scholar]
  • Tran Q.H., Ferre D., Pauchon C., Masella J.P. (1998) Transient simulation of two-phase flows in pipes, Revue de l’Institut Français du Pétrole 53, 6, 801–811. [Google Scholar]
  • Henriot V., Duret E., Heintzé E., Courbot A. (2002) Multiphase production control: Application to slug flow, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 57, 1, 87–98. [Google Scholar]
  • Duan J., Li J., Liu H., Gu K., Guan J., Xu S., Gong J. (2018) A model of wax deposition under oil-gas two-phase stratified flow in horizontal pipe, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 80. [Google Scholar]
  • Ghajar A.J. (2020) Two-phase gas-liquid flow in pipes with different orientations, Springer International Publishing. [Google Scholar]
  • Salhi Y., Si-Ahmed E.K., Legrand J., Degrez G. (2010) Stability analysis of inclined stratified two-phase gas–liquid flow, Nucl. Eng. Des. 240, 5, 1083–1096. [Google Scholar]
  • Ferré D. (1979) Écoulements diphasiques à poches en conduite horizontale, La Houille Blanche 6–7, 378–381. [Google Scholar]
  • Thaker J., Banerjee J. (2015) Characterization of two-phase slug flow sub-regimes using flow visualization, J. Petrol. Sci. Eng. 135, 561–576. [Google Scholar]
  • Thaker J., Banerjee J. (2016) Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe, J. Petrol. Sci. Eng. 145, 298–320. [Google Scholar]
  • Deendarlianto, Rahmandhika A., Dinaryanto O., Widyaparaga A., Indarto (2019) Experimental study on the hydrodynamic behavior of gas-liquid air-water two-phase flow near the transition to slug flow in horizontal pipes, Int. J. Heat Mass Transf. 130, 187–203. [Google Scholar]
  • Arabi A., Salhi Y., Zenati Y., Si-Ahmed E.K., Legrand J. (2020) On gas-liquid intermittent flow in a horizontal pipe: Influence of sub-regime on slug frequency, Chem. Eng. Sci. 211, 115251. [Google Scholar]
  • Arabi A. (2019) Contribution à l’étude du comportement d’un écoulement diphasique dans une conduite en présence d’une singularité, PhD thesis, USTHB, Algiers, Algeria. [Google Scholar]
  • API (2016) API 579-1/ASME FFS-1 2016 Fitness-For-Service, American Petroleum Institute, Washington, DC. [Google Scholar]
  • Dukler A.E., Hubbard M.G. (1975) A model for gas-liquid slug flow in horizontal and near horizontal tubes, Industrial & Engineering Chemistry Fundamentals 14, 4, 337–347. [Google Scholar]
  • Taitel Y., Dukler A.E. (1977) A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes, Int. J. Multiphase Flow 3, 6, 585–596. [Google Scholar]
  • Wallis G.B., Dobson J.E. (1973) Prediction of the initiation of slugs with linear stability criterion, Int. J. Multiphase Flow 1, 173–193. [CrossRef] [Google Scholar]
  • Taitel Y., Dukler A.E. (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J 22, 1, 47–55. [Google Scholar]
  • Hurlburt E.T., Hanratty T.J. (2002) Prediction of the transition from stratified to slug and plug flow for long pipes, Int. J. Multiphase Flow 28, 5, 707–729. [Google Scholar]
  • Miao S., Hendrickson K., Liu Y. (2019) Slug generation processes in co-current turbulent-gas/laminar-liquid flows in horizontal channels, J. Fluid Mech. 860, 224–257. [Google Scholar]
  • Cheng S.C., Wong Y.L., Groeneveld D.C. (1988) CHF prediction for horizontal flow, in: International Symposium on Phase Change Heat Transfer, Chongqing, Sichuan, China, May 20-23, 1988, pp. 211–215. [Google Scholar]
  • Weisman J., Duncan D.G.J.C.T., Gibson J., Crawford T. (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines, Int. J. Multiphase Flow 5, 6, 437–462. [Google Scholar]
  • Fan Z., Lusseyran F., Hanratty T.J. (1993) Initiation of slugs in horizontal gas-liquid flows, AIChE J. 39, 11, 1741–1753. [CrossRef] [Google Scholar]
  • Woods B.D., Hanratty T.J. (1999) Influence of Froude number on physical processes determining frequency of slugging in horizontal gas–liquid flows, Int. J. Multiphase Flow 25, 6–7, 1195–1223. [CrossRef] [Google Scholar]
  • Salhi Y. (2010) Contributions théorique et expérimentale à l’étude des phénomènes de transition d’un écoulement stratifié à l’écoulement poche/bouchon dans une conduite horizontale en présence de singularité, PhD Thesis, USTHB Algiers, Algeria. [Google Scholar]
  • Vaze M.J., Banerjee J. (2012) Prediction of liquid height for onset of slug flow, Can J. Chem. Eng. 90, 5, 1295–1303. [Google Scholar]
  • Ghajar A.J., Tang C.C. (2010) Importance of non-boiling two-phase flow heat transfer in pipes for industrial applications, Heat Trans. Eng. 31, 9, 711–732. [Google Scholar]
  • Vaze M.J., Banerjee J. (2011) Experimental visualization of two-phase flow patterns and transition from stratified to slug flow, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 225, 2, 382–389. [Google Scholar]
  • Bhagwat S.M., Ghajar A.J. (2015) An empirical model to predict the transition between stratified and non-stratified gas-liquid two-phase flow in horizontal and downward inclined pipes, Heat Trans. Eng. 36, 18, 1489–1498. [Google Scholar]
  • Thaker J., Banerjee J. (2017) Experimental investigations on onset of slugging in horizontal air-water two-phase flow, in: Fluid Mechanics and Fluid Power–Contemporary Research, Springer, New Delhi, pp. 157–166. [Google Scholar]
  • Dinaryanto O., Prayitno Y.A.K., Majid A.I., Hudaya A.Z., Nusirwan Y.A., Widyaparaga A. (2017) Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe, Exp. Therm. Fluid Sci. 81, 93–108. [Google Scholar]
  • Kadri U. (2014) A probabilistic approach for predicting average slug frequency in horizontal gas/liquid pipe flow, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 2, 331–339. [Google Scholar]
  • Arabi A., Salhi Y., Si-Ahmed E.K., Legrand J. (2018) Influence of a sudden expansion on slug flow characteristics in a horizontal two-phase flow: a pressure drop fluctuations analysis, Meccanica 53, 13, 3321–3338. [Google Scholar]
  • Zitouni A.H., Arabi A., Salhi Y., Zenati Y., Si-Ahmed E.K., Legrand J. (2021) Slug length and frequency upstream a sudden expansion in gas-liquid intermittent flow, Exp. Comput. Multiphase Flow 3, 2, 124–130. [Google Scholar]
  • Thaker J., Banerjee J. (2016) On intermittent flow characteristics of gas–liquid two-phase flow, Nucl. Eng. Des. 310, 363–377. [Google Scholar]
  • Talley J.D., Worosz T., Kim S., Buchanan J.R. Jr. (2015) Characterization of horizontal air–water two-phase flow in a round pipe part I: Flow visualization, Int. J. Multiphase Flow 76, 212–222. [Google Scholar]
  • Thaker J., Banerjee J. (2017) Transition of plug to slug flow and associated fluid dynamics, Int. J. Multiphase Flow 91, 63–75. [Google Scholar]
  • Fossa M., Guglielmini G., Marchitto A. (2003) Intermittent flow parameters from void fraction analysis, Flow Meas. Instrum. 14, 4–5, 161–168. [CrossRef] [Google Scholar]
  • Wang X., Guo L., Zhang X. (2007) An experimental study of the statistical parameters of gas–liquid two-phase slug flow in horizontal pipeline, Int. J. Heat Mass Trans. 50, 11–12, 2439–2443. [Google Scholar]
  • Arabi A., Ragui K., Salhi Y., Filali A. (2020) Slug frequency for a gas-liquid plug flow: Review and development of a new correlation, Int. Commun. Heat Mass Trans. 118, 104841. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.