Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 39
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2019007
Published online 12 April 2019
  • Fakoya M.F., Shah S.N. (2017) Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles, Petroleum 3, 4, 391–405. [CrossRef] [Google Scholar]
  • Miranda C.R., Lara L.S.d., Tonetto B.C. (2012) Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications, in: SPE International Oilfield Nanotechnology Conference and Exhibition, 12–14 June, Noordwijk, The Netherlands, Society of Petroleum Engineers. [Google Scholar]
  • Sun X., Zhang Y., Chen G., Gai Z. (2017) Application of nanoparticles in enhanced oil recovery: a critical review of recent progress, Energies 10, 3, 345–378. [CrossRef] [Google Scholar]
  • Sun Q., Li Z., Li S., Jiang L., Wang J., Wang P. (2014) Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles, Energy Fuels 28, 2384–2394. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Shojaei S., Riazi M., Sharifi M. (2018b) Review on application of nanoparticles for EOR purposes; a critical of the opportunities and challenges, Chin. J. Chem. Eng. DOI: 10.1016/j.cjche.2018.05.022, In press. [Google Scholar]
  • Rezvani H., Khalilnejad A., Sadeghi-Bagherabadi A.A. (2018) Comparative experimental study of various metal oxide nanoparticles for the wettability alteration of carbonate rocks in EOR processes, in: 80th EAGE Conference and Exhibition 2018, 11–14 June, Copenhagen, Denmark. [Google Scholar]
  • Rezvani H., Riazi M., Tabaei M., Kazemzadeh Y., Sharifi M. (2018b) Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@ Chitosan nanocomposites, Colloids Surf. A Physicochem. Eng. Aspects. 544, 15–27. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Eshraghi S.E., Kazemi K., Sourani S., Mehrabi M., Ahmadi Y. (2015a) Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and its effect on heavy oil recovery, Ind. Eng. Chem. Res. 54, 233–239. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Eshraghi S.E., Sourani S., Reyhani M. (2015b) An interface-analyzing technique to evaluate the heavy oil swelling in presence of nickel oxide nanoparticles, J. Mol. Liq. 211, 553–559. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Malayeri M., Riazi M., Parsaei R. (2015c) Impact of Fe3O4 nanoparticles on asphaltene precipitation during CO2 injection, J. Nat. Gas Sci. Eng. 22, 227–234. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Sharifi M., Riazi M. (2018) Mutual effects of Fe3O4/Chitosan nanocomposite and different ions in water for stability of w/o emulsions at low-high salinities, Energy Fuels 32, 12, 12101–12117. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Sharifi M., Riazi M., Rezvani H., Tabaei M. (2018a) Potential effects of metal oxide/SiO2 nanocomposites in EOR processes at different pressures, Colloids Surf. A Physicochem. Eng. Aspects 559, 372–384. [CrossRef] [Google Scholar]
  • Kashefi S., Lotfollahi M.N., Shahrabadi A. (2018) Investigation of asphaltene adsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 2. [CrossRef] [Google Scholar]
  • Liao D.L., Liao B.Q. (2007) Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol. A Chem. 187, 2, 363–369. [CrossRef] [Google Scholar]
  • Xiao X., Ouyang K., Liu R., Liang J. (2009) Anatase type titania nanotube arrays direct fabricated by anodization without annealing, Appl. Surf. Sci. 255, 3659–3663. [CrossRef] [Google Scholar]
  • Dambournet D., Belharouak I., Amine K. (2009) Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties, Chem. Mater. 22, 3, 1173–1179. [CrossRef] [Google Scholar]
  • Regonini D., Bowen C.R., Jaroenworaluck A., Stevens R. (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng. R Rep. 74, 377–406. [CrossRef] [Google Scholar]
  • Esmaeilzadeh P., Sadeghi M.T., Bahramian A. (2018) Production improvement in gas condensate reservoirs by wettability alteration, using superamphiphobic titanium oxide nanofluid, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 46. [CrossRef] [Google Scholar]
  • Bennetzen M.V., Mogensen K. (2014) Novel applications of nanoparticles for future enhanced oil recovery, in: International Petroleum Technology Conference, 10–12 December, Kuala Lumpur, Malaysia, International Petroleum Technology Conference. [Google Scholar]
  • Jiang R., Li K., Horne R. (2017) A mechanism study of wettability and interfacial tension for EOR using silica nanoparticles, in: SPE Annual Technical Conference and Exhibition, 9–11 October, San Antonio, Texas, USA, Society of Petroleum Engineers. [Google Scholar]
  • Sepehrinia K. (2017) Molecular dynamics simulation for surface and transport properties of fluorinated silica nanoparticles in water or decane: Application to gas recovery enhancement, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 3, 17. [CrossRef] [Google Scholar]
  • Panahpoori D., Dehdari B., Riazi M., Parsaei R. (2018) Visualization experiments on the impact of surfactant and nanoparticle on EOR potential of foam injection, in: Innovations in Geosciences – Time for Breakthrough, 9–12 April, Saint Petersburg, Russia, European Association of Geologists and Engineers. [Google Scholar]
  • Zhang H., Nikolov A., Wasan D. (2014) Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments, Energy Fuels 28, 5, 3002–3009. [CrossRef] [Google Scholar]
  • Li K., Wang D., Jiang S. (2018) Review on enhanced oil recovery by nanofluids, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 37. [CrossRef] [Google Scholar]
  • Haroun M.R., Alhassan S., Ansari A.A., Al Kindy N.A.M., Abou Sayed N., Kareem A., Ali B., Sarma H.K. (2012) Smart nano-EOR process for Abu Dhabi carbonate reservoirs, in: Abu Dhabi International Petroleum Conference and Exhibition, 11–14 November, Abu Dhabi, UAE, Society of Petroleum Engineers. [Google Scholar]
  • Moghadam T.F., Azizian S. (2014) Effect of ZnO nanoparticles on the interfacial behavior of anionic surfactant at liquid/liquid interfaces, Colloids Surf. A Physicochem. Eng. Aspects 457, 333–339. [CrossRef] [Google Scholar]
  • Castillo J., Vargas V., Piscitelli V., Ordoñez L., Rojas H. (2017) Study of asphaltene adsorption onto raw surfaces and iron nanoparticles by AFM force spectroscopy, J. Pet. Sci. Eng. 151, 248–253. [CrossRef] [Google Scholar]
  • Franco-Aguirre M., Zabala R.D., Lopera S.H., Franco C.A., Cortés F.B. (2018) Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs, J. Nat. Gas Sci. Eng. 51, 53–64. [CrossRef] [Google Scholar]
  • Villard J.-M., Buckley J.S., Morrow N.R., Gauchet R. (1993) Wetting and Waterflood Oil Recovery of a Moderately Viscous Crude Oil, in: Advances in core technologies, 1993, Texas, Huston, USA, Society of Core Analysts. [Google Scholar]
  • Rezvani H., Khalilnezhad A., Ganji P., Kazemzadeh Y. (2018a) How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions?, J. Mol. Liq. 252, 158–168. [CrossRef] [Google Scholar]
  • Rodríguez K., Araujo M. (2006) Temperature and pressure effects on zeta potential values of reservoir minerals, J. Coll. Interf. Sci. 300, 2, 788–794. [CrossRef] [Google Scholar]
  • Zhang P., Tweheyo M.T., Austad T. (2007) Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−, Colloids Surf. A Physicochem. Eng. Aspects 301, 1, 199–208. [Google Scholar]
  • Zhang Y., Morrow N.R. (2006) Comparison of secondary and tertiary recovery with change in injection brine composition for crude-oil/sandstone combinations, in: SPE/DOE symposium on improved oil recovery, 22–26 April, Tulsa, Oklahoma, USA, Society of Petroleum Engineers. [Google Scholar]
  • Nassar N.N. (2010) Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies, Energy Fuels 24, 8, 4116–4122. [CrossRef] [Google Scholar]
  • Hosseinpour N., Khodadadi A.A., Bahramian A., Mortazavi Y. (2013) Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology, Langmuir 29, 14135–14146. [CrossRef] [PubMed] [Google Scholar]
  • Ye Z., Zhang F., Han L., Luo P., Yang J., Chen H. (2008) The effect of temperature on the interfacial tension between crude oil and gemini surfactant solution, Colloids Surf. A Physicochem. Eng. Aspects 322, 138–141. [CrossRef] [Google Scholar]
  • Jennings H.Y. (1967) The effect of temperature and pressure on the interfacial tension of benzene-water and normal decane-water, J. Coll. Interf. Sci. 24, 3, 323–329. [CrossRef] [Google Scholar]
  • Tang G.-Q., Kovscek A. (2004) An experimental investigation of the effect of temperature on recovery of heavy oil from diatomite, SPE J. 9, 2, 163–179. [CrossRef] [Google Scholar]
  • Hjelmeland O., Larrondo L. (1986) Experimental investigation of the effects of temperature, pressure, and crude oil composition on interfacial properties, SPE Res. Eng. 1, 4, 321–328. [CrossRef] [Google Scholar]
  • Moeini F., Hemmati-Sarapardeh A., Ghazanfari M.-H., Masihi M., Ayatollahi S. (2014) Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure, Fluid Phase Equilib. 375, 191–200. [CrossRef] [Google Scholar]
  • Cai B.-Y., Yang J.-T., Guo T.-M. (1996) Interfacial tension of hydrocarbon + water/brine systems under high pressure, J. Chem. Eng. Data 41, 3, 493–496. [CrossRef] [Google Scholar]
  • Manshad A.K., Olad M., Taghipour S.A., Nowrouzi I., Mohammadi A.H. (2016) Effects of water soluble ions on interfacial tension (IFT) between oil and brine in smart and carbonated smart water injection process in oil reservoirs, J. Mol. Liq. 223, 987–993. [CrossRef] [Google Scholar]
  • Flock D., Le T., Gibeau J. (1986) The effect of temperature on the interfacial tension of heavy crude oils using the pendent drop apparatus, J. Can. Pet. Technol. 25, 2. [CrossRef] [Google Scholar]
  • Lashkarbolooki M., Ayatollahi S., Riazi M. (2014) The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection, J. Chem. Eng. Data 59, 11, 3624–3634. [CrossRef] [Google Scholar]
  • Hashemi R., Nassar N.N., Pereira-Almao P. (2012) Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure, Energy Fuels 26, 3, 1645–1655. [CrossRef] [Google Scholar]
  • Mohammadi M., Akbari M., Fakhroueian Z., Bahramian A., Azin R., Arya S. (2011) Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids, Energy Fuels 25, 3150–3156. [CrossRef] [Google Scholar]
  • Vorkapic D., Matsoukas T. (1998) Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides, J. Am. Ceram. Soc. 81, 11, 2815–2820. [CrossRef] [Google Scholar]
  • Xuan Y., Li Q., Hu W. (2003) Aggregation structure and thermal conductivity of nanofluids, AIChE J. 49, 4, 1038–1043. [CrossRef] [Google Scholar]
  • Roustaei A., Moghadasi J., Bagherzadeh H., Shahrabadi A. (2012) An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration, in: SPE International Oilfield Nanotechnology Conference and Exhibition, 12–14 June, Noordwijk, The Netherlands, Society of Petroleum Engineers. [Google Scholar]
  • Ogolo N., Olafuyi O., Onyekonwu M. (2012) Enhanced oil recovery using nanoparticles, in: SPE Saudi Arabia Section Technical Symposium and Exhibition, 8–11 April, Al-Khobar, Saudi Arabia, Society of Petroleum Engineers. [Google Scholar]
  • ShamsiJazeyi H., Miller C.A., Wong M.S., Tour J.M., Verduzco R. (2014) Polymer‐coated nanoparticles for enhanced oil recover, J. Appl. Polym. Sci. 131, 15, 15–28. [Google Scholar]
  • Nassar N.N., Hassan A., Vitale G. (2014) Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles, Appl. Catal. A Gen. 484, 161–171. [CrossRef] [Google Scholar]
  • Tian H., Wang M. (2018) Electrokinetic mechanism of wettability alternation at oil-water-rock interface, Surf. Sci. Rep. 72, 369–391. [CrossRef] [Google Scholar]
  • Srinivasan S. (2006) Fuel cells: From fundamentals to applications, Springer Science & Business Media, Berlin, Germany. [Google Scholar]
  • Taqvi S.T., Almansoori A., Bassioni G. (2016) Understanding the role of Asphaltene in wettability alteration using ζ potential measurements, Energy Fuels 30, 3, 1927–1932. [CrossRef] [Google Scholar]
  • O’Brien R.W. (1990) Electroacoustic studies of moderately concentrated colloidal suspensions, Faraday Disc. Chem. Soc. 90, 301–312. [CrossRef] [Google Scholar]
  • Hanaor D., Michelazzi M., Leonelli C., Sorrell C.C. (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, J. Eur. Ceram. Soc. 32, 235–244. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.